
A guide to Stata

Florian Chávez Juárez∗

Version 1.7 - May 18, 2015

Contents

1 Introduction 5

1.1 Why to use Stata? . 5

1.2 Alternative tutorials . 5

2 Interface, components and data structure 6

2.1 Interface . 6

2.2 Command based . 7

2.3 Help files . 7

2.4 File types . 7

2.5 Data types: database and variables . 8

2.6 Data type and format . 9

2.6.1 Data type . 9

2.6.2 compress - Optimize the memory use of your database 10

2.6.3 Further compressing by using a ZIP-file . 10

2.6.4 Display format . 10

2.6.5 format - Change the display format of a variable 11

2.7 Missing values . 11

3 Basic commands 12

3.1 do-files . 12

3.1.1 Line breaks . 12

3.1.2 Comments . 12

3.2 Prepare Stata for your analysis . 13

3.3 Loading and saving data . 14

3.4 The generic Stata command . 14

3.5 Types of commands . 15

3.6 Conditions . 15

3.7 Relational and logical operators . 16

3.8 Placeholders and selection of multiple variables . 16

3.9 Matrices . 17

3.9.1 matrix define - Generic command for matrices 17

∗Centro de Investigración y Docencia Económicas (CIDE), Mexico City, Mexico. florian@chavezjuarez.com

1

http://www.econ.chavezjuarez.com/vcheck.php?i=stata&v=1.7
mailto:florian@chavezjuarez.com

CONTENTS CONTENTS

3.9.2 Some basic matrix functions . 18

3.9.3 matrix list - Displaying matrices . 18

3.9.4 matrix rownames/colnames - Renaming matrix columns and rows 18

3.9.5 matrix get - Getting system matrices . 18

3.9.6 mkmat - Data to Matrix conversion . 18

3.9.7 svmat - Matrix to Data conversion . 18

3.10 Factor variables and time series operators . 19

3.10.1 i. - Categorical variables in the regression . 19

3.10.2 l. - Lagged variables . 19

3.10.3 f. - Forwarded variables . 19

3.10.4 d. - Difference . 19

3.10.5 c. - Continuous variables . 19

3.10.6 # - Interaction terms . 20

3.11 Loops and programming conditions . 20

3.11.1 if/else - if/else/elseif clause . 20

3.11.2 while - while loop . 21

3.11.3 foreach - Looping through elements . 21

3.11.4 forvalues - Looping through numerical values 22

4 System commands 23

4.1 System commands . 23

4.1.1 exit - Leaving the do-file or Stata . 23

4.1.2 query - Displaying Stata options . 23

4.1.3 set - Change settings . 23

4.1.4 about - Getting information of the version and license 23

4.1.5 update - Update your Stata . 23

4.1.6 findit - Find ado-files online . 24

4.1.7 search - Search ado-files online . 24

4.1.8 help - Display help . 24

5 Data handling 25

5.1 Variable manipulation . 25

5.1.1 generate - Generate a new variable . 25

5.1.2 replace - Replacing a variable . 25

5.1.3 egenerate - Generate a new variable with summary statistics 25

5.1.4 recode - Recoding a variable . 26

5.1.5 label - Label your variables . 26

5.1.6 rename - Rename a variable . 27

5.1.7 drop - Deleting variables . 28

5.2 Describing and sorting the data . 28

5.2.1 describe - Describe the dataset . 28

5.2.2 codebook - Display the codebook . 28

5.2.3 sort - Sorting the data . 28

5.2.4 gsort - Sorting the data . 28

5.2.5 order - Sorting the variables . 29

2

CONTENTS CONTENTS

5.2.6 aorder - Sorting the variables alphabetically 29

5.3 Joining several databases . 29

5.3.1 merge - Merging/appending two databases (horizontally) 29

5.3.2 append - Appending/merging two databases (vertically) 30

5.4 Changing structure of a database (panel data) . 31

5.4.1 reshape - Reshape your panel data . 31

6 Summary statistics and graphics 32

6.1 Descriptive statistics . 32

6.1.1 summarize - Summary statistics . 32

6.1.2 tabstat - More flexible summary statistics . 32

6.1.3 tabulate - One- and twoway tables of frequencies 32

6.1.4 correlate - Correlation and Covariance . 33

6.2 Graphs and plots . 33

6.2.1 plot - Easy scatter plot . 33

6.2.2 graphics - General graphics . 34

6.2.3 spmap - Build vectorial maps with shapefiles (shp) 36

6.2.4 Export graphs . 37

7 Econometric analysis 39

7.1 Continuous outcome . 39

7.1.1 regress - OLS estimation . 39

7.1.2 Other estimators of continuous outcome . 40

7.2 Categorical outcome . 41

7.2.1 probit - Probit estimation . 41

7.2.2 dprobit - Probit estimation with marginal effects 41

7.2.3 logit - Logit regression . 41

7.2.4 mlogit - Multinominal logit . 41

7.2.5 oprobit - Ordered probit model . 41

7.2.6 ologit - Ordered logit model . 41

7.3 Count data . 41

7.3.1 poisson - Poisson regression . 41

7.3.2 nbreg - Negative binomial regression . 42

7.4 Panel data . 42

7.4.1 xtset - Set-up the panel data . 42

7.4.2 xtdescribe - Describe the pattern of the panel data 42

7.4.3 xtreg - Panel regression: fixed and random effects 43

7.5 Time series . 43

7.6 Extracting estimation results . 43

7.7 Post estimation . 44

7.7.1 hettest - Breusch-Pagan / Cook-Weisberg test for heteroskedasticity 44

7.7.2 test - Test linear hypotheses after estimation 44

7.8 Saving and reusing estimations . 44

7.8.1 est store - Save an estimation . 44

7.8.2 est restore - Restore an estimation . 45

3

CONTENTS CONTENTS

7.8.3 est replay - Replay an estimation . 45

7.8.4 est table - Display an estimation table of several regressions 45

7.9 Marginal effects . 46

7.9.1 margins - Compute marginal effects (post estimation) 46

8 Stata meets LaTeX 50

8.1 Exporting high quality graphics to LaTeX . 50

8.1.1 graph export - Graph export to eps . 50

8.2 Exporting estimation results to LaTeX . 50

8.2.1 estout - Creating estimation tables . 50

8.2.2 tabout - Creating descriptive statistics tables 52

9 Importing data in other formats 54

9.1 usespss - Read SPSS data . 54

9.2 fdause - Read SAS XPORT data . 54

10 Stata is not enough? Add user-written modules to enhance Stata 55

11 Programming your own command 56

11.1 Where and how to save your routine? . 57

11.2 Useful commands for programming . 57

11.2.1 tokenize - Tokenize a string . 57

11.2.2 macro shift - Shifting the content of a local 58

11.2.3 marksample - Selecting the sample considering if and in 58

11.2.4 preserve - Making an image of your current data 58

11.2.5 restore - Restoring an image of your data . 58

11.2.6 local:extended - Extract labels from variables and value labels 58

12 Simulation 60

12.1 Uniform distribution . 60

12.2 Normal distribution . 60

12.3 Other distributions . 60

12.4 Setting the random seed . 61

4

1 INTRODUCTION

1 Introduction

This document has mainly two purposes: first, it should help new users to get started with Stata® and

second, it should serve more experienced users as a look-up document. In order to comply with the

first goal of the document, I start with a general introduction to the software package and introduce

then chapter by chapter more complicated notions in order to familiarize the reader with the software

first and then introduce him to the possibilities Stata® offers. The second goal should be achieved by

the use of a clear structure and an extensively detailed index in the end of the document. Like soft-

ware development, this document will never achieve a final version and comments and suggestions are

always welcome. Even though I refer to some econometric models, this document is NOT a reference

for econometric analysis. The reader is supposed to understand the models I present here and know

how and when to use them.

The document is under constant review and subject to changes and extensions. Please check for

updated versions frequently. Please report all errors to florian@chavezjuarez.com.

Check your version online

Click here or go to http://www.econ.chavezjuarez.com/vcheck.php?i=stata&v=1.7 to check if

you have the newest version.

This document is freeware. You can find the newest version online at http://econ.chavezjuarez.

com/stata.php for free.

1.1 Why to use Stata?

Stata® is one of the most used software packages in applied econometrics, since it is fast, flexible and

relatively easy to understand. In addition to the very long list of included packages to run econometric

analysis, Stata® benefits from a large user base and high quality user written commands that can

be installed and used very easily. For almost any econometric application that can be found in the

literature, there is a package. See section 10 for an explanation on how to add user written packages

to Stata® .

Besides the wide-ranging possibilities in terms of econometric analysis, Stata® has, in my opinion,

two very important advantages. First, it is not only a statistical package, but also a data-handling

package. Merging, manipulating, extracting etc. of databases is very easy and very fast in Stata® . A

second plus of the software is the possibility to interact with other software packages, especially with

LATEX , allowing to produce directly result displays without a need to copy them to the LATEX .

1.2 Alternative tutorials

There are many tutorials about Stata® available in the internet. Definitely the most complete way to

learn about Stata® is the Stata® -help, integrated in your program or online at http://www.stata.

com/help.cgi?contents. Other good addresses are:

� http://www.econ.uiuc.edu/~econ472/tutorial1.html

� http://www.cpc.unc.edu/research/tools/data_analysis/statatutorial/index.html

� http://data.princeton.edu/stata/ (Very nice tutorial)

� http://www.ats.ucla.edu/stat/stata/

5

mailto:florian@chavezjuarez.com?subject=Guide to Stata (version 1.7)
http://www.econ.chavezjuarez.com/vcheck.php?i=stata&v=1.7
http://www.econ.chavezjuarez.com/vcheck.php?i=stata&v=1.7
http://econ.chavezjuarez.com/stata.php
http://econ.chavezjuarez.com/stata.php
http://www.stata.com/help.cgi?contents
http://www.stata.com/help.cgi?contents
http://www.econ.uiuc.edu/~econ472/tutorial1.html
http://www.cpc.unc.edu/research/tools/data_analysis/statatutorial/index.html
http://data.princeton.edu/stata/
http://www.ats.ucla.edu/stat/stata/

2 INTERFACE, COMPONENTS AND DATA STRUCTURE

2 Interface, components and data structure

2.1 Interface

The Stata® interface might be somewhat scary at first glance, but it becomes very useful once the

user understands it well. Figure 1 represents a typical setting of the interface, where the big black

part is the output panel of Stata® , all results will be displayed there1. On the left side you have the

list of variables of the currently loaded database (see 3.3). Below the output panel, you will find the

command line, which should be used only under some circumstances I will present afterwards. Below

Output panel

Variables in
active data

Command line
Current working

directory

do-File
editor

Figure 1: Stata Interface (Version 11.2)

the command line you see the current working directory, which is by default always the directory

where Stata® is installed. Among the button in the menu, you find the do-file editor, which will

probably be the most used button. The do-file editor is a simple text-editor with syntax highlighting

1In the new versions of Stata, the black screen is actually white and the results in black. Personally I prefer the black

version (you can activate it under Edit → Preference → General preferences → Color scheme: Classic.) It looks a little

bit more old-fashioned but highlights very well the different results.

6

2 INTERFACE, COMPONENTS AND DATA STRUCTURE 2.2 Command based

(since Version 11). The remaining parts of the interface will be introduced later on, but they will not

play a crucial role in the way I suggest to use Stata® .

2.2 Command based

Unlike other statistical packages, Stata® is mostly command based and the use of user interfaces

is relatively limited. Generally, all commands could be initiated by the use of the mouse and user

interfaces, however, it is not an efficient way to do things. My suggestion is to take the time to

learn correctly the syntax-based use of Stata® and to work exclusively with the do-files. Do-files

are like m-files in Matlab or Syntax-files is SPSS and allow to write down a series of commands and

programming code. Using do-files to do all - starting from loading the database, carrying out the

analysis and storing the results - permits to save time and avoid errors. Moreover, the results are

easily reproducible by you and other researchers.

Normally, every line in the do-file corresponds to one command, which is generally what you want and

avoids the need of finishing every line with a special character like in many programming languages.

However, Stata® offers also the possibility to change this temporarily or permanently if you like it.

This feature is useful when you have an extremely long command which does not fit the screen at all

(see 3.1.1 for more details).

2.3 Help files

All official Stata® and most of the user written commands are accompanied by a so-called help file.

These files generally include a description of what the command is performing, an explanation of the

syntax including mandatory and optional arguments and some examples.

To display the help file just type into the command line

help commandname

where commandname is simply the name of the command you would like to see the corresponding help

file.

At the beginning of a help file, the syntax is explained. The bold elements refer to the name of the

command and in some cases to the options. The underlined part of the word is the part you have to

write in the command, the remaining characters need not be written. For instance, the command for

a simple OLS regression is regress, however it is sufficient to write reg. All elements in brackets “[

]” refer to optional elements. The syntax is generally divided into two parts by a comma (,) where all

behind the comma are options.

Some elements are present in almost all commands:
depvar The dependent variable

indepvar The independent variables

varlist A list of variables, just write one after the other

[if] If condition you might include to limit the command to a sample

[in] In condition you might include to limit the command to a sample

[weight] Possibility to include a variable with sample weights

2.4 File types

A Stata® -project is generally composed of at least two files. The database is where your data is

stored and has the file type extension .dta. The do-files containing the commands to be performed

7

2.5 Data types: database and variables2 INTERFACE, COMPONENTS AND DATA STRUCTURE

in the analysis end with the extension .do and is a simple text file you can also manipulate in other

text editors like Notepad or Notepad++.

Besides these two main file types there exists the help files (ending with .hlp) and the ado-files ending

with .ado. Both are used especially when you write your own commands, a topic I will discuss in

section 11.

Finally Stata® is not limited to these file types, you can theoretically read and write any kind of files.

I will discuss a couple of examples like the output of graphics, the automatic generation of LATEX files

or the import of SPSS and SAS data (section 9)

The following table displays the most common file extensions used in Stata® :

Extension Description

.dta database file in Stata format

.do Executable Stata syntax file

.ado Stata command file (each command is written in an ado-file)

.hlp Stata help file (has the same name as command)

2.5 Data types: database and variables

When thinking about statistical analysis the main data type is obviously the database containing all

the information you want to analyze. This kind of data is stored in the .dta files and can be loaded

(see section 3.3) with the command use. However, there are other data types used in Stata® as well.

When you write a do-file, you probably need from time to time saving some information in a variable

to use it again later on. It would be very inefficient to save such information to the database, thus

you can store them in other places.

type supported format Way to define it Way to invoke value

local numeric and string local name=55 `name'

global numeric and string global name=55 $name

scalar numeric scalar name=55 name

matrix numeric matrix see matrix

The first three types are generally interchangeable, however I suggest to use the local whenever possible.

The local is preferable to the global since it remains set only until the end of the do-file, while the

globals are not cleared automatically in the end. This feature of the globals can be useful in some

cases, however, there is always a risk of having a global defined in a previous do-file and affecting later

on when it should not. Moreover, it could be argued that the locals have a clearer invoking command

than the scalars, since they need to be in between two very specific apostrophes always. On the other

hand, scalars have the advantage that we can display easily all stored scalar values at once using the

command scalar list.

Globals

To define a global and giving it the value of 888 you can just write

global myname=888

. If you would like to define the global based on the results of another command which stores the

value for instance as r-class-scalars, you might use

8

http://notepad-plus-plus.org/

2 INTERFACE, COMPONENTS AND DATA STRUCTURE 2.6 Data type and format

global N=r(N)

for instance. To use them later on you have to use the dollar-symbol before the name:

display "The total number of observations is: $N"

Locals

The use of locals is essentially identical to the use of globals with a small difference in the way you

invoke the variable. Before the name, you have to write a single opening apostrophe (ASCII symbol

96) and right after the name a simple apostrophe (ASCII symbol 39). The following example defines

first a numeric local containing the age of a person and then a string local with the name. In the third

line, a small text with the information will be displayed:

local age=39

local name="Peter"

di "The age of ‘name’ is ‘age’ years"

This will produce the text The age of Peter is 39 years.

Scalars

The scalars can only take numerical values and the way to invoke them is at a first glance easier,

since you just write their name. However, this might lead to confusions with the variable names, a

potentially problematic issue.

2.6 Data type and format

The variable format is an important issue in Stata® like in all application dealing with data of this

type. The goal is to use the least possible amount of memory for the variables. A particular issue

in Stata® is that we have to distinguish between the actual format of the variable when it is saved

and the output format, thus the way values are displayed. Hence, the data type refers to the way the

information is stored in the database and data format is the way the information is displayed.

2.6.1 Data type

Data can be either numerical or string, which is probably the most basic distinction.

Numerical types

The following table gives a short overview of the different numerical data types in Stata® :

Storage type Minimum Maximum Closest to 0

(but 6= 0)

bytes

byte -127 100 ±1 1

int -32’767 32’740 ±1 2

long -2’147’483’647 2’147’483’620 ±1 4

float −1.701× 1038 1.701× 1038 ±10−38 4

double −8.988× 10307 8.988× 10307 ±10−323 8

9

2.6 Data type and format 2 INTERFACE, COMPONENTS AND DATA STRUCTURE

String types

Regarding string variables it becomes very easy, since they are simply going from str1 being one

letter up to str244 containing a maximum of 244 letters. The format is always at least as high as the

largest entry in the database. Assume that in all but one observation, we do not have a string and

in the one observation, we have 66 symbols. In this case, 66 bytes of memory are needed for every

observation, hence it is worthy to avoid unnecessary string variables in a database.

How to choose the best type? This relative technical information on the storage type and used

bytes might frighten a bit, but in practice this is hardly a topic, since there is a wonderful command

called compress which analyzes every variable and converts it to the best storage format.

2.6.2 compress - Optimize the memory use of your database

The command compress is a very powerful tool to reduce the size of your database to the minimum

needed. The command simply analyzes each variable and sets its format to the best fitting.

Hint 1. When you work with large datasets, combine several of them and create new variables, it

is very recommended to include the command compress just before saving your database in order to

avoid wasting memory for nothing.

2.6.3 Further compressing by using a ZIP-file

Especially when working with micro data the databases can become very large. If you have to send

them to other people, you might want to consider putting them into a zip-file, which you can do under

Windows in the Explorer for instance. The size reduction you can achieve depends a lot on your

data, but it is not uncommon to reduce the size by up to 90%!! Such high compressions are especially

possible when you have a lot of missing values or even more when many long string variables are

empty.

2.6.4 Display format

Besides the format in which a value is stored on your disk, Stata® has a display format, which can

differ from the first. The percentage sign is used to declare formats. For numerical values, there are

mainly two types: the general (g) and the fixed (f) format. The general format depends on the number,

while the fixed format has for instance a fixed number of decimals, no matter what the number is.

For instance:

Complete number %6.2g %6.2f

99.1234 99 99.12

.0159 .016 0.02

500 500 500.00

.001 .001 0.00

Stata® supports also date and time formats. See the help file for details.

Knowing these format types can be very useful in commands like est table, estout or tabout

10

2 INTERFACE, COMPONENTS AND DATA STRUCTURE 2.7 Missing values

2.6.5 format - Change the display format of a variable

You can also assign to a variable a certain display format. For instance, if you wish to see the income

always with two decimals, you can use the command

format income %6.2f

2.7 Missing values

Like in any other statistical package, missing values have a special code in Stata® . The normal

coding of a missing variable is a dot (.), for instance you might want to set a value to missing

replace age=. if age<0

if the indicated value is not plausible. Alternatively, you can also condition your commands on missing

or non-missing values2:

tab education if age==.

This example would give you the frequency tables of the variable education for all people whose age

we do not know.

In some cases it can be interesting to distinguish different cases of missing values (e.g. refusal, not

applicable, etc), where you can extend the dot by a letter. Imagine that in the original data refusals

are coded as -999 and not applicable as -998. We can then use for instance the recode command to

set different types of missing values:

recode myvariable (-999=.a)(-998=.b)

You can even label these types of missing values like any other value label. When running econo-

metric analyses, these missing values are considered like the standard missing values, hence they are

not taken into account.

2Normally non-missing values are excluded by default for obvious reasons

11

3 BASIC COMMANDS

3 Basic commands

Before starting with commands allowing to perform econometric analysis, it is important to un-

derstand the generic Stata® -command and to know several relevant commands to customize the

Stata® environment and to load and save the data.

3.1 do-files

Commands should be written in a do-file, even though you could also write them directly in the com-

mand line and then pressing ENTER. The problem by doing so would be that you could hardly repro-

duce what you did before. Using a do-file is like writing a programming script, Stata® goes through

it and performs each command you write in the do-file. An important point is that Stata® stops the

execution on error, meaning that you can be sure that everything went well if the do file is executed

until the end. To start a new do-file simply click on the button for the do-file editor (see figure 1) and

start writing.

To execute the file you can click on the corresponding symbol () you find in the editor, go through

the menu or click [CTRL]+[D] on your keyboard, which is obviously the most convenient way to do it.

Hint 2. The combination of pressing first [CTRL]+[S] and then [CTRL]+[D] might help you to save

a lot of time and nerves. The first simply saves your do-file and the second executes. By doing it

always like that, you can be sure your do-file is saved on the hard drive and even if Stata® crashes

once, you will have your file

.

3.1.1 Line breaks

If you have very long commands that do not fit on the screen and you do not want them to be in one

line, you can generate a line break with three slashes ///:

mycommand depvar indepvar1 indepvar2 indepvar3 indepvar4 indepvar5 indepvar6 ///

indepvar7 indepvar8 indepvar9 indepvar10

alternatively, you can temporarily activate the active line break, meaning that you have to break the

lines manually by the semicolon symbol (;) like in many other programming languages. To activate

the manual line break type

delimit ;

and to come back to the normal line break

delimit cr;

3.1.2 Comments

You can and should comment your code which can be done with a double slash // or a star *.

The double slash works at the beginning of the line or in the middle, while the star only works to

declare a whole line as comment. For longer comments you can use the combination /* my comment */

12

3 BASIC COMMANDS 3.2 Prepare Stata for your analysis

* This is a comment on the whole line

reg y x //here I can comment the command

/* Here you can write a

comment on several

lines */

est store myreg //and yet another in-line comment

Hint 3. This is probably the most common hint: do comment your code as much and as clear as

possible! This is not only useful when working with colleagues, but also when coming back to your

do-file after a while. It might be difficult to understand your own code when it is not commented!!

3.2 Prepare Stata for your analysis

In a do-file the first things to do, even before loading the data, is to prepare the memory and the

Stata® environment for it. Typically, we want to clean the memory before starting the analysis in

order to have a common starting point every time the do-file is used. Using clear all erases all

Stata® -relevant information from your memory. Once you did that you can change the memory

size at the disposal of Stata® by using the command set mem 100m to give Stata® 100 megabytes of

memory. Generally, it is advised to provide Stata® with sufficient memory, at least 100 megabytes

more than the size of the database.

A next command you might want to use is the cd to change the working directory. The working

directory is the place Stata® looks for databases if you do not indicate the whole path. Hence, it

might be useful to change the working directory to the place where your data is stored (or where you

want to store the output). This helps you to avoid writing every time the whole path. For instance,

if you want to change the working directory to the folder data in your C drive you write:

cd C:/data

An alternative to change the directory is to define variables containing the path of your data and to

use then these variables. Both methods have the enormous advantage over writing the whole path

every time you load or save something, that when running the file on a different computer, you simply

adapt one line of your code and you do not have to change it all over in your file.

Another command I suggest to use in the beginning of the do-file is

set more off

which avoids breaks in the execution of the do-file when the output of one single command is longer

than the screen size. Normally Stata® stops allowing you to see all the results, but this is not very

convenient when working with do-files. Rather than indicating this command in all do-files, you can

execute once the command

set more off, permanently

in order to change it permanently (this changes the default value from on to off).

Hence, the head of a do-file could look like:

1: clear all

13

3.3 Loading and saving data 3 BASIC COMMANDS

2: set more off

3: set mem 250m

4: cd C://data

5: global source="C:/data/analysis1"

6: global output="C:/data/analysis1/results"

where line one deletes all from your memory, line 2 disables the break in the output, line 3 increases

or decreases the memory to 250 megabytes, line 4 changes the working directory to C://data and the

lines 5 and 6 define two variables (source and output) containing the information of the source and

output folder you will use.

3.3 Loading and saving data

Loading data in Stata® means to load the database into the RAM-memory of your computer. Only

one database can be active at a time. The command is extremely simple

use C:/data/analysis1/mydata

to load for instance the database mydata.dta located in folder C://data/analysis1. Note that with

the global variable defined in the short example before, we could simply write

use $source/mydata

since in the variable source we stored the whole path. Yet another possibility is to use only the rela-

tive path from the current working directory. As we are in the working directory C://data (indicated

in line 4 of the example before) we can simply write

use analysis1/mydata

Hint 4. Always load and save databases with a do-file to avoid overwriting a database or to work on

the wrong one.

Hint 5. Always save the database in a do-file with another name than the database you open at the

beginning. Otherwise, you could not run the do-file twice, since the changes would now be in the

initial database.

If needed, you can only load a part of a database, say variables x1 x2 and x3. The command becomes

simply

use x1 x2 x3 using $source/mydata

Moreover, you can use conditions on the data, for instance an if (see section 3.6)

3.4 The generic Stata command

All Stata® commands have a common structure:

name varlist conditions, options

The command starts with the name of the command in order to tell Stata® what to do. The name is

followed by the list of variables you would like to use in the command. Depending on the command, this

list might include dependent and independent variables individually or together. The list of variables

is followed by the sample conditions allowing you to perform the command only on a subsample of your

14

3 BASIC COMMANDS 3.5 Types of commands

data. All you find after the comma are options, some of them might be mandatory. Understanding

the logic of a Stata® command is crucial and it allows to fully understand the Stata® -help I present

in section 2.3

3.5 Types of commands

Stata® commands are classified into different classes, depending on their content. Knowing about the

exact definition of the classes is not absolutely needed, but it might be important to know the two

most common for posterior use of stored results. The two main classes are:

r-class This is the most general class, including most of the commands for descriptive

statistics such as summarize or tabstat. Results of this type of commands are

stored in r(). To display the whole set of results, type return list after the

command. Note that these results remain active until the next r-class command.

e-class The e-class commands are normally econometric estimations such as regress. The

results are stored in e() and can be displayed typing ereturn list. As for the

r-class, the values in e() are stored until the next e-class command is executed.

Example

For instance, if you would like to use the mean of a variable as a local you could use the following

code:

summarize income

local meanincome=r(mean)

di ’’The mean income is: ‘income’ $’’

where the first line is the r-class command summarize displays a series of summary statistics such

as the mean, the standard deviation and others. The second line recovers the stored data3 in r()

and saves it in the local meanincome. Finally, in the third line of this not very practical example, a

short text indicating the mean income is displayed. The following example recovers the adjusted R2

statistic from a simple OLS regression and stores it in a scalar:

regress income education experience

scalar rsquared=e(r2_a)

Besides the e-class and r-class there exist also n-class and s-class commands, however, they are used

very rarely. An easy way to find out if a command is r-class or e-class is to look in the help file how

the results are stored. Normally towards the end of the help file a list of stored results are indicated.

3.6 Conditions

Generally, Stata® commands can be conditioned on a subsample of the dataset. The condition might

take different forms and is normally introduced after the varlist and before the comma separating

the command from its options. The most important condition is the if-condition starting simply with

the word if followed by a logical condition. For instance, if you want to run a regression only for

women and you have a dummy variable female taking the value of 1 if the person is a woman, the

simple regression command becomes

3To see all the stored values, type return list just after the summarize command

15

3.7 Relational and logical operators 3 BASIC COMMANDS

regress y x1 x2 x3 if female==1

A second way to limit the sample is the in-condition, where you can run the command for instance

for the first 100 observations (regress y x1 x2 x3 in 1/100).

Hint 6. The in-condition might be very helpful when you write a do-file containing a very computation

intensive command and you would like to run the do-file in order to check if it works. Limiting the

command to a small number of observations avoids loosing time when checking the do-file.

Hint 7. A nice and sometimes more elegant alternative to the if condition is to multiply your

expression with a logical statement. Imagine you want to compute the value of a variable only for

|Z| < 1, you can use the following command

gen kernel=(1-abs(Z)) * (abs(Z)<1)

where (abs(Z)<1) is a logical element returning 1 if the condition is satisfied and 0 otherwise, hence

the variable kernel will take the value 0 (not missing!) whenever the condition is not satisfied.

3.7 Relational and logical operators

Like in every programming language, logic operators are crucial for a correct programming.

+ Addition > greater than

- Subtraction >= greater or equal than

* Multiplication < smaller than

/ Division <= smaller or equal than

^ Power == equal than

& and ! = not equal

| or

Stata® is very liberal in the use of logical operators and allows much more than other languages4.

For instance “=” and “==” are not supposed to mean the same thing: gen v1=1 generates a variable

containing the value 1 and ttest v1==1 performs a t-Test if the variable v1 has mean 1. However, you

could also write ttest v1=1 and Stata® automatically considers “=” as “==”. This is sometimes

useful, however I strongly suggest the correct distinction between the two equal signs, since some

commands do not support both notations!

3.8 Placeholders and selection of multiple variables

Placeholders can become very important when you work a lot with Stata® . Imagine the quite

academic case in which you have a database with one dependent variable y and 25 independent

variables named x1 to x25. Without placeholder you would have to write each x-variable individually

in a command, however, using the * placeholder you can shortcut your command by a lot:

reg y x*

would be a simple OLS regression (see regress) of the variable y on all x-variables. Now assume that

for some reason you only want to use x12 to x18. In this case the * placeholder is not very useful, but

4One could also say that Stata® is somewhat sloppy with the logical operators

16

3 BASIC COMMANDS 3.9 Matrices

you can use the - sign:

reg y x12-x18

will include all the variables starting from x12 up to x18. However, this gives you only the correct

result if the variable order is alphabetical or if at least only the desired variables are in between x12 up

to x18. Hence, the - sign simply tells Stata® to take all variables between the two indicated variables.

Hint 8. The order of variables in Stata® has generally no specific logic and new variables are simply

added in the end of the table. Using the command order you can order the variables according to

your needs and aorder can be used to order all variables alphabetically.

3.9 Matrices

Stata® has two matrix systems, one that is implemented directly in the Stata® environment and

Mata, which is to some extend a language apart. In this section, I deal only with the standard matrix

package of Stata® . It has to be noticed that for matrix algebra Stata® is probably not the best

software, so do not expect the quality of MATLAB or R when dealing with matrices.

3.9.1 matrix define - Generic command for matrices

Even though it is rather unusual to input a matrix by hand, in some cases it might be necessary (e.g.

for very simple user written command).

matrix input A=(1,2,3\4,5,6)

defines

A =

[
1 2 3

4 5 6

]

Combining matrices

You can also create a matrix as a function of other matrices (as long as the dimensions match):

matrix define C = A + B

where A and B are two matrices of the same dimensions. The following table provides an overview of

matrix operations available:

Operator Symbol

transpose ’

negation -

Kronecker product #

division by scalar /

multiplication *

subtraction -

addition +

column join ,

row join \

17

http://www.r-project.org

3.9 Matrices 3 BASIC COMMANDS

3.9.2 Some basic matrix functions

Some basic matrix functions include the following:

Function Description

colsof(M) Returns the number of columns in matrix M

rowsof(M) Returns the number of rows in matrix M

issymmetric(M) Returns 1 if M is symmetric, otherwise 0

det(M) Returns the determinant of matrix M

trace(M) Returns the trace of matrix M

I(n) Returns the entity matrix of dimension n

inv(M) Returns the inverse matrix of M

3.9.3 matrix list - Displaying matrices

To display matrix mymat you simply use

matrix list mymat

3.9.4 matrix rownames/colnames - Renaming matrix columns and rows

To rename the column and row names you can use the following commands:

matrix colnames A="Column 1" "Column 2" "Column3"

for the columns, and

matrix rownames A=A B C

for rows. As you can see, whenever the name consists only of one word, you do not need the quotes.

3.9.5 matrix get - Getting system matrices

Many estimation commands store important information in matrices, for instance the estimated coeffi-

cients of a regression are generally stored in the matrix e(b) and the corresponding variance-covariance

matrix in e(V). For further use of this information it is needed or at least recommended to extract

these matrices to a user-defined matrix with the command

matrix b = get(b)

for the betas for instance. Learn more about extracting results from estimations in section 7.6

3.9.6 mkmat - Data to Matrix conversion

It might be necessary in some cases to convert your data into a matrix or vice versa. This can be done

very easily with

mkmat x1 x2 x3 x4

to convert the variables x1,x2,x3 and x4 into four column vectors with the same names or with

mkmat x1 x2 x3 x4, matrix(mymat)

to convert the four variables into a x× 4 matrix called mymat.

3.9.7 svmat - Matrix to Data conversion

To perform the reverse operation, you use

svmat mymat

18

3 BASIC COMMANDS 3.10 Factor variables and time series operators

which will create four new variables named mymat1, mymat2, mymat3 and mymat4 respectively.

3.10 Factor variables and time series operators

Many times, you do not want to enter variables in regressions just like they are, but in some specific

form. This is when the so-called factor variables enter the game. Basically, we are talking about

prefixes for the variables to tell Stata® what to do with it.

3.10.1 i. - Categorical variables in the regression

Imagine you have a categorical variable and would like to include each category as a dummy variables

(for category fixed effects). Defining for each outcome a dummy variable (using tabulate might be

one solution, but probably not the most efficient one. You can simply write i. before the variable

and Stata® will understand that all but one of these values should be used as dummy variables. This

is not simply saving time in coding dummy variables but also reducing memory needs by a lot.

3.10.2 l. - Lagged variables

In time series or panel analysis, you might want to use lagged variables. This is easily done with the

prefix l., for instance

reg y l.y x1 x2

will perform an OLS estimation (regress) of y on the lagged value of y and two control variables x1
and x2. If you need more than one lag you can different choices:

Syntax Variables Description

ll.x xt−2 Double lagged variable used

l(1/2).x xt−1,xt−2 Lagged and double lagged variables

l(0/5).x xt,xt−1, ... xt−5 From non lagged to 5 periods lagged variables

3.10.3 f. - Forwarded variables

Just like lagged variables, it might be of need to use forwarded variables using the f. prefix. It works

exactly the same way as l..

3.10.4 d. - Difference

Just like lagged variables, you can create difference variables, for instance δyt = yt − yt−1 is created

by

gen dy=d.y

. Higher interval differences can be created with the same logic seen for l..

3.10.5 c. - Continuous variables

Sometimes you have to specifically tell Stata® that a variable should be considered to be continuous,

e.g. when you use interaction terms. However, normally this does not have any impact:

reg y c.x1

is exactly the same as

reg y x1

19

3.11 Loops and programming conditions 3 BASIC COMMANDS

3.10.6 # - Interaction terms

Instead of defining interaction terms in a new variable using the product of the two in case of having

continuous variables or combinations for categorical data, you can use the symbol #. However simply

writing

reg y x z x#z

works only if x and z are categorical variables. In this case, all possible combinations are included as

a dummy variable. To be clear about what Stata® does, I would however always write

reg y x z i.x#i.z

which is not absolutely needed but recommendable. This is especially the case because the #-symbol

can also be used to create squared values and continues interaction terms. Assume now that both, x

and z are continues and you would like to estimate the model

y = α+ β1x+ β2z + β3xz + ε

This can be done by writing

reg y x z c.x#c.z

where the c. tells Stata® that you would like to create an interaction by multiplication of two

variables and not with all possible combination dummies.

3.11 Loops and programming conditions

A very important notion in any programming language or syntax are the loops and conditions. It is

essential to understand them and to use them wherever it is possible. To understand this section on

conditions and loops, it is necessary to be familiar with the data type local explained in section 2.5

Hint 9. Using loops instead of writing several times the same code with only slight differences helps

reducing errors. Generally the shorter your code is, the better you did your job!

3.11.1 if/else - if/else/elseif clause

The most basic clause is the if clause. In Stata® it is implemented in a rather standard way:

local random=uniform()

if(‘random’>0.99){

display "This is rather an unlikely event"

}

else if(‘random’<0.01){

display "This is also an unlikely event"

}

else{

display "This is pretty normal"

}

20

3 BASIC COMMANDS 3.11 Loops and programming conditions

The example first defines a local variable drawn form a uniform distribution. Then it displays a text

in function of the value. The first if condition is TRUE when the value is higher than 0.99, the second

element is a else if (with a space) condition being TRUE when the value is below 0.01 and the last

element is the else-statement if the two conditions before returned FALSE.

3.11.2 while - while loop

The while condition is implemented in a very similar way to the if statement:

local i=1

while(‘i’<10){

di "‘i’"

local i=‘i’+1

}

This example simply displays all numbers from 1 to 10 on the output screen.

3.11.3 foreach - Looping through elements

Things are getting more interesting with the foreach statement, which loops through a predefined set

of elements. For instance you can loop through a local variable:

local text="Hello Stata users"

foreach word of local text{

di "‘word’"

}

or

local myarray="1 2 5 9 7 15"

foreach i of local myarray{

di "‘i’"

}

The example takes every element of the local, stores it temporarily in the new local called word and

uses it in the commands. You can also loop through variables:

foreach var of varlist x*{

sum ‘var’

}

or

foreach var of varlist x1 x2 x3{

sum ‘var’

}

where the loop performs the summarize command for each variable starting with the letter x. The

general syntax of foreach is

foreach runner of arraytype array

21

3.11 Loops and programming conditions 3 BASIC COMMANDS

where the italic elements can be changed. The runner refers to the local variable that changes in

every loop, the arraytype indicates what kind of array the loop should go through (for instance local,

global, varlist) and finally the array is the array containing the elements to loop through.

3.11.4 forvalues - Looping through numerical values

The last loop type is the forvalues which is contrary to the foreach limited to numerical values.

Here are two examples:

forvalues i=1/4{

display "‘i’"

}

forvalues i=4(0.5)5{

display "‘i’"

}

where the first example displays the series 1,2,3,4 and the second 4,4.5,5

22

4 SYSTEM COMMANDS

4 System commands

4.1 System commands

There are some Stata® commands, which you will not use very frequently, however, they might be of

interest in some situations. The system commands are related neither directly to the data nor to the

econometric analysis, but they allow you to adapt Stata® to your needs or update it.

4.1.1 exit - Leaving the do-file or Stata

The command exit has mainly two purposes. When running a do-file you might want to stop it at a

given point (breaking point). By including the command exit the do-file will stop executing without

an error message. If you use exit in the command line, Stata® will be closed if you do not have

unsaved data in your memory. If you do have unsaved data, then you can add the option clear in

order to force Stata® to shut down without saving the data.

4.1.2 query - Displaying Stata options

Stata® has many default settings you can change temporarily or permanently. To display all the

settings the user can change just type query or query topic where topic is the topic for which you

would like to the see the settings. For instance, query memory displays all the settings related to the

memory. To change the settings, use the command set.

4.1.3 set - Change settings

Use set to change the default settings of Stata® , with or without the option permanently to keep

the new settings for all future uses of Stata® . For instance, to change the memory allocated to

Stata® to 300mb you can simply write

set mem 300m

Hint 10. The settings are saved locally on the machine, thus changing them permanently on a server

version of Stata® might be useless.

4.1.4 about - Getting information of the version and license

By typing about Stata® displays information on your license and the version of your Stata® . Addi-

tionally information on the available memory of the computer is given.

4.1.5 update - Update your Stata

Like every software package Stata® needs to be updated from time to time. By typing update all

Stata® will update all possible files where an update is available. Updates are made on executables,

utilities and especially ado-files. If you simply wish to see if there are updates available type update

query. Normally Stata® performs checks for updates every week, you can get the information by

typing query update.

23

4.1 System commands 4 SYSTEM COMMANDS

Hint 11. Updating a server based Stata® must be done on the server and not on the local machine

4.1.6 findit - Find ado-files online

findit is a very powerful command permitting you to search for ado-files (commands) on the internet.

If you know the name of an ado-file then type it, otherwise use keywords to describe the command

you are looking for. The search is performed in well-known Stata® -repositories and by clicking on

install Stata® will automatically download and install the package. For instance, knowing that

the package nldecompose performs Oaxaca decomposition for non-linear models, you can find and

download using

findit nldecompose

Otherwise, if you want to find this package but you do not know its name, just write

findit oaxaca

and a list of potentially interesting packages will be displayed.

4.1.7 search - Search ado-files online

see findit

4.1.8 help - Display help

The Stata® -help is very useful for new and experienced users. I guess nobody knows all the commands

and especially the options of Stata® -commands by heart, therefore the help is your best friend. Just

type

help commandname

to display the help file of the command commandname. See section 2.3 for more information on the

Stata-Help.

24

5 DATA HANDLING

5 Data handling

5.1 Variable manipulation

In Stata® it is very easy to create, label and rename variables allowing you to understand your data

afterwards much better. In this section, I present some useful commands.

5.1.1 generate - Generate a new variable

To create a new variable, you use generally the command generate (gen). For instance you can

generate a variable by summing up two other variables

gen v3 = v1 + v2

To generate variables that contain summary statistics of the sample, for instance the sample mean,

you have to use oftentimes egenerate (egen)

Generating dummy variables

To generate dummy variables you can use the generate command together with some conditions,

for instance:

gen teenager=0

replace teenager=1 if age>10 & age <=20

generates a dummy variables taking the value of 1 if a person’s age is bigger than 10 and smaller or

equal 20. A simpler way to define this variable is just by including the condition in the first statement

gen teenager=(age>10 & age<=20)

5.1.2 replace - Replacing a variable

When a variable already exists you cannot use the command generate, but you might use replace,

which works essentially the same way. For instance, if you want to replace negative income of people

by a zero (or missing value) you could do

replace income=0 if income<0

or

replace income=. if income<0

5.1.3 egenerate - Generate a new variable with summary statistics

The command egenerate or simply egen is similar to generate but is used normally to generate a

new variable out of statistical operations. For instance, if you want to compute the average of several

variables, let’s say x1 x2 x3, you could use

gen xmean=(x1+x2+x3)/3

however this gives you a missing value if in any of the three variables you have a missing value, which

might be exactly what you are looking for. If this is not the case and you would like to get a value

even if one variable has missing values, then you should use

25

5.1 Variable manipulation 5 DATA HANDLING

egen xmean=rowmean(x1 x2 x3)

Experience working with Stata® will help you to understand in which situation to use egen rather

than gen.

5.1.4 recode - Recoding a variable

Recode is a powerful command to change the values of a categorical variable in particular. Imagine

we get a database where the variable indicating the gender is coded as follows: 1=man and 2=woman

and 3=unknown. We would like to have a variable where man=0 and woman=1 and .=unknown (see

2.7 for a discussion of missing values). We could use three times the replace command:

replace gender=0 if gender==1

replace gender=1 if gender==2

replace gender=. if gender==3

This is probably even a good solution in this case, but imagine you want to change the values of a

categorical variable with 10 values. This is when recode becomes more efficient. To make the before

mentioned change, the command would be

recode gender (3=.)(2=1)(1=0)

Actually, the command recode can much more than that:

recode x1 x2 x3 (-999 -998 -997 = .)(1 2 3 = 1)(5 6 7 = 2)

recodes the three variable x1, x2 and x3 simultaneously and put the negative values -999, -998 and

-997 to missing, 1,2 and 3 to 1 and 4, 5 and 6 to 2.

It is also possible to generate new variables (in this example x new and y new) out of the recoding and

holding the original variables at their initial values:

recode x y (1=0)(2=1), gen(x new y new)

Note that the order of the varlist in the option gen must correspond to the order in the main

varlist of the command.

5.1.5 label - Label your variables

Stata® know two types of labels: value labels and variable labels.

Variable labels The variable label is simply a text describing a variable in general. It appears in

the variable overview and helps you to understand the content of a variable. To define or redefine

(overwrite the old) a variable label simply write

label variable income "Income of the person in US$"

to label the variable income with the text between the two quotes.

Hint 12. Try to keep variable names short and describe the content in the variable label. For

instance if you have a variable with the log annual income per capita avoid variable names like

log annual income per capita and use rather lincpc with a corresponding variable label Log annual

income per capita

26

5 DATA HANDLING 5.1 Variable manipulation

Value labels

Besides the variable label Stata® is also capable to assign value label, meaning that each value of

a variable is labeled and in the database the label is shown instead of the actual value. This is useful

in the case of categorical data. Let us illustrate the value labels with a small example. Imagine a

variable lstatus taking three values: 1 for people still in education, 2 for people in the active labor

force and 3 for retired people. Using for instance the command tab we could display the frequencies,

but the table would not be very self-explaining:

lstatus | Freq. Percent Cum.

------------+-----------------------------------

1 | 357 35.70 35.70

2 | 324 32.40 68.10

3 | 319 31.90 100.00

------------+-----------------------------------

Therefore it is useful to label the values. The first step is to define the label. This would be

label define lstatlabel 1 "In education" 2 "Labor force" 3 "Retired"

where we name the label lstatlabel and then indicate the value and in quotes the corresponding label.

This command only saves the label, we still have to assign it to the variable.

To assign the variable we use again the command label:

label value lstatus lstatlabel

Now the table with the frequencies becomes:

lstatus | Freq. Percent Cum.

-------------+-----------------------------------

In education | 357 35.70 35.70

Labor force | 324 32.40 68.10

Retired | 319 31.90 100.00

-------------+-----------------------------------

which looks already much nicer.

Hint 13. It is possible to assign the same label to different variables, for instance you can define a

label called dummy and assign it to all the dichotomous variables. Let us say we want to label the

variables d1, d2 and d3 with the label dummy we would use label value d1 d2 d3 dummy

Once the variables are labeled, it is also possible to automatically extract these labels. For more

details see section 11.2.6.

5.1.6 rename - Rename a variable

Variables in micro data have oftentimes quite reasonable but not very intuitive names, thus it is

important to rename variables in order to have intuitive names. Renaming in Stata® is extremely

easy, let us say we want to rename the variable st98q01 in indigenous. The command is simply given

by:

rename st98q01 indigenous

27

5.2 Describing and sorting the data 5 DATA HANDLING

Note that this does not alter the content of the variable nor any kind of labels.

5.1.7 drop - Deleting variables

To delete one or various variables use

drop id gender age

The example above simply drops the three variables id, gender and age.

5.2 Describing and sorting the data

5.2.1 describe - Describe the dataset

describe is used to display a description of the dataset, not descriptive statistics of the data! By

typing desc without a variable all the variables will be described, while the inclusion of a variable list

will limit the description to those variables. Here is the example for only one variable:

Contains data

obs: 1,000

vars: 1

size: 8,000 (99.9% of memory free)

storage display value

variable name type format label variable label

lstatus float %12.0g lstatlabel Labor market status

where Stata® indicates you first how many observations are available in the dataset (independent

of missing values!) and how many variables you have. The value size refers to the memory use of

the database (in this case almost nothing is used). After this information on the whole dataset, the

information of each variable is displayed. First the name, then the format and the display format,

followed by the assigned value label and the variable label.

5.2.2 codebook - Display the codebook

codebook is similar to the variable related part of describe, however, with much more details. Besides

the format and some information on the labels, the units, the range, frequencies etc. are displayed.

5.2.3 sort - Sorting the data

You can easily sort your data according to one or more variables with the command sort. For instance

sort IDhousehold IDindividual

would make the following change in the database:

IDhousehold IDindividual Age

2 1 56

1 2 34

1 1 33

2 2 61

becomes

IDhousehold IDindividual Age

1 1 33

1 2 34

2 1 56

2 2 61

5.2.4 gsort - Sorting the data

gsort works basically like sort, but you can sort the data in the opposite direction by including a

minus sign (-):

gsort -year

28

5 DATA HANDLING 5.3 Joining several databases

will sort the data according the variable year starting with the highest value.

5.2.5 order - Sorting the variables

While sort sorts your data vertically, the command order allows you to sort the data horizontally,

meaning you can change the order of the variables. Normally this is not a very important feature, but

there are situations when it might be necessary (e.g. to have the identifier of the observations at the

beginning for easier use or to use the placeholder symbol “-” in estimation commands). By writing

order id name country

the variables id, name and country will be put in the beginning of the dataset, while all the remaining

variables remain unchanged!

5.2.6 aorder - Sorting the variables alphabetically

Like the command order, aorder allows you to change the order of the variables in your dataset,

however, in the alphabetical order. By simply writing

aorder

without any varlist , all the variables will be ordered alphabetically, where special symbols like

underlines () come first, followed by capital letters and lower case letters.

If you indicate a varlist like

aorder ID name country

then the variables id, name and country will come first, followed by all the remaining variables in

alphabetical order.

5.3 Joining several databases

Especially when working with micro data, it is oftentimes needed to merge several databases into one.

Stata® is very efficient in this kind of data handling. Two main ways of merging/appending two or

more datasets into one are to be considered. The first situation is when we have two datasets with

different variables for the same individual, firm or household. In this case we use the command merge.

The second situation is when we have two databases with the same variables but not for the same

people, thus we would like to add one to the other and we use append

5.3.1 merge - Merging/appending two databases (horizontally)

Before starting to describe the command merge there must be made a difference between the version

11 and higher and the previous versions, since the command changed slightly. Both versions perform

the same action in the end, but the syntax became more explicit in the newer version. In what follows

I refer to both versions.

Prepare the data for merge

Before being able to merge we have to prepare the data. A necessary condition is that in both

databases we have an identifier of the observation, which might consist of a single variable (e.g.

individual ID number), or a series of variables (e.g. family ID number + intra family rank). In both

databases the variables must be coded the same way and should have the same format. We have to

sort the databases by these identifiers first. Since only one database can be active at a time, there

is always the master -database (the active one) and the using-database, the one we integrate in the

master.

29

5.3 Joining several databases 5 DATA HANDLING

Merging under version 10 or lower

In version 10 or lower of Stata® the command to use when ready is:

merge id1 id2 using myusingdata

where id1 and id2 are two variables that identify the observation and that are present in both databases.

The word using is used to indicate Stata® that the following part will be the database(s) to be joined.

The last part refers to our using-data called myusingdata in this example.

Merging under version 11 and higher

Basically the syntax in the newer version is the same, with the small exception that we have to

indicate now where we can find multiple entries. Imagine that you have individuals in the master

data and household information in the using data, thus the same household data must be added to

all members of the same household. In the earlier versions Stata® just “tried to understand” it at the

risk to misunderstand it. Now, you must indicate it here. The example would then be for instance:

merge [n:1] householdID using householdinfo

In this example the master data contains the individuals and the using-data the household informa-

tion. The term n:1 means that multiple observations in the master -data are to be merged with one

observation in the using-data. If you have individual data on both sides, you would use 1:1 and in

case of merging multiple to multiple the term becomes n:n.

Merging result

Once the merge of the databases performed, Stata® displays the results and stores information in

the new variable merge by default5. The generated variable is coded in the following way:

1 the observation was only found in the master data (no merge)

2 the observation was only found in the using data (no merge)

3 merge successful, observation found in both

4 observation found in both, missing values updates

5 observation found in both, conflict in some variables

5.3.2 append - Appending/merging two databases (vertically)

Appending data is generally easier than merging, since you don’t need identifiers. The command

append simply adds the rows using-database (see merge) to the current database. In case of having

the same variable in both databases (the normal case), the data is just added. If in one of the two

databases the variable was not present, the column is added and in the database where it was not

present, missing values are added. The command is simply

append using myusingdata

where myusingdata is the database to add to the active database.

In case of not having the same format in the variables (same variable in the two databases), you should

use the option force in order to enable Stata® to convert the formats where necessary. This might

be especially needed for string variables, since they are generally defined to be as long as the longest

5with the option generate(myvarname) you can change merge to myvarname

30

5 DATA HANDLING 5.4 Changing structure of a database (panel data)

entry (to save memory) and these values might differ from one the other database.

5.4 Changing structure of a database (panel data)

5.4.1 reshape - Reshape your panel data

There are two ways to save panel data in a database, the long and the wide form. Depending on

the amount of variables that are constant over time (e.g. gender) the one or the other form are more

suitable.

long:

id year income

1 2000 5.6

1 2005 7.2

2 2000 8.3

2 2005 9.1

wide:

id income2000 income2005

1 5.6 7.2

2 8.3 9.1

The command reshape can be used to change your data easily from one to the other format. If you

want to reshape from wide to long, then use

reshape long income, i(ID)

where a new variable j will be created with the years. If you want to call it years right away, you

can include additionally the option j(year).

To get back to the wide form, write

reshape wide income,i(id) j(year)

31

6 SUMMARY STATISTICS AND GRAPHICS

6 Summary statistics and graphics

6.1 Descriptive statistics

6.1.1 summarize - Summary statistics

The command summarize or just sum provides you with the essential summary statistics of the variable.

Without options or varlist the command provides the number of non-missing observations, the

average, the standard deviation and the minimum and maximum value. By using the option detail

additional summary statistics like the percentiles, skewness and kurtosis are displayed. summarize is

a r-class function and stores all the displayed valued in r(name) which you can consult typing return

list

6.1.2 tabstat - More flexible summary statistics

An alternative and oftentimes more flexible way to get summary statistics is the command tabstat.

Its basic syntax is

tabstat varlist [if] [in],[stats(statisitics) by(byvar)]

where the varlist contains all variables you would like to analyze. The if and in conditions are

straightforward. The true utility of the tabstat command comes with the two non-mandatory options

stats(statisitics) and by(byvar). The first allows you to specify the list of statistics you would like

to compute. The most common options include the mean (mean), median (median or p50), standard

deviation (sd), maximum (max), minimum (min) or the number of observations (n or count). The

whole list of available statistics can be found in the helpfile. The by(byvar) allows you to compute

these statistics by subpopulations defined by the variable byvar.

Let us consider two examples. First,

tabstat income, stats(mean median min max) by(region)

will give you the mean, median, minimum and maximum of the variable income for each region as

defined in the variable region. For each region, Stata® will display a row with the four specified

statistics. Adding the option column(variable) would change the direction of the table, putting the

variable in the columns and the statistics in the rows.

tabstat income wage consumption, stats(mean median min max) column(stats)

will do the same but instead of displaying a row for each region, you will get a row for each variable

specified. You can also combine the two! Without the option column(stats) Stata® will display the

variables in the columns and the statistics in the row.

6.1.3 tabulate - One- and twoway tables of frequencies
While summarize is very useful for continuous variables, tabulate is the most useful command for
categorical data. It provides you with a table of frequencies of each possible outcome. You can also
create a 2-way table where every possible combination of two variables are presented. For instance

tab gender indigenous, mi

gives something like
| indigenous

gender | 0 1 . | Total

-----------+---------------------------------+----------

0 | 2,608 669 54 | 3,331

1 | 2,627 635 74 | 3,336

. | 48 12 2 | 62

32

6 SUMMARY STATISTICS AND GRAPHICS 6.2 Graphs and plots

-----------+---------------------------------+----------

Total | 5,283 1,316 130 | 6,729

where the option mi (missing) indicates that you also want the missing values to be considered as

a category. The total number of observations is 6729, 2608 non-indigenous men and for instance 12

indigenous people who’s gender we don’t know. About 2 people we do not have any information.

Generate dummies of each category

The tabulate command has an interesting side-feature that allows you to create easily a dummy

variable for each possible outcome, by simply adding the option gen(name). For example

tab gender, gen(d)

creates a variable d1 for men and d2 for women. If we would have specified the option missing

an additional variable d3 for the missing values would have been created. The naming of the new

variables is simply the name indicated and an increasing integer at the end.

6.1.4 correlate - Correlation and Covariance
The simple correlation of two (continuous) variables is probably one of the most useful descriptive
statistics. To display the correlation matrix of a set of variables simply use

corr x1 x2 x3

and Stata® will provide you with a result like
| x1 x2 x3

-------------+---------------------------

x1 | 1.0000

x2 | -0.0185 1.0000

x3 | 0.7128 0.6881 1.0000

In case of preferring the covariance matrix instead of the correlation matrix, add the option covariance
to the command:

corr x1 x2 x3, cov

which will display you the following matrix:

| x1 x2 x3

-------------+---------------------------

x1 | 1.05657

x2 | -.018846 .987245

x3 | 1.03772 .9684 2.00612

6.2 Graphs and plots

6.2.1 plot - Easy scatter plot
A very easy, even though somewhat outdated, way to visualize your data is the plot command, which
provides you in the output window an approximate graph of your data. For instance,

plot x1 x3

would display something like:

5.10264 +

| *

| *

| * *

| *

| ** * *

| * ** *

| * ** *

| * ** * *

x | * ****** *

33

6.2 Graphs and plots 6 SUMMARY STATISTICS AND GRAPHICS

1 | * * *

| ******* *

| * * ***

| ** * *

| * * **

| * ** ***

| **

| * *

| ** *

|

.057795 + *

+--+

4.16933 x3 31.902

I agree that this way of visualizing data is probably not the state-of-the art in the century of vectorial

graphics, however, it is a fast way to get a first impression. A newer - and much more advanced - way

to visualize data is the graphics command, which I will explain in the next section.

6.2.2 graphics - General graphics

Stata has an enormous amount of possible graphics you can create, however, the precise syntax is

not always easy to obtain. The Stata® graph website provides a very useful visual overview of the

different graphs that can be produced with corresponding commands. The following table presents

some example, hoping that the reader can extract from the proposed syntax some useful information

and tricks.

Output Syntax

0
.0

5
.1

.1
5

D
en

si
ty

0 5 10 15 20
x1

Kernel density estimate
Normal density

kernel = epanechnikov, bandwidth = 0.9835

Kernel density estimate

kdensity x1, normal

34

http://www.stata.com/support/faqs/graphics/gph/statagraphs.html

6 SUMMARY STATISTICS AND GRAPHICS 6.2 Graphs and plots

Output Syntax

0

5

10

15

20

F
re

qu
en

cy

0 5 10 15 20
x1

Histogram of variable x1

histogram x1, normal width(1)

frequency title(Histogram of variable

x1) scheme(economist)

42.31%

57.69%
54.55%

45.45%

Natives Foreigner

Men Women

Note: Artificial data

Gender distribution of natives and foreigners

graph pie , over(female)

by(foreigner,title(Gender

distribution of natives and

foreigners, span) note(Note:

Artificial data, span)) plabel(all

percent) scheme(sj)

0
5

10
15

20
x1

5 10 15 20 25
x2

95% confidence interval Linear fit
Obseravtions

Relationship between x1 and x2

twoway (lfitci x1 x2)(scatter x1 x2),

title(Relationship between x1 and x2)

ytitle(x1) xtitle(x2) legend(order(1

"95% confidence interval" 2 "Linear

fit" 3 "Obseravtions"))

35

6.2 Graphs and plots 6 SUMMARY STATISTICS AND GRAPHICS

Output Syntax

0
.0

2
.0

4
.0

6
.0

8
.1

D
en

si
ty

0 5 10 15 20 25
α

Notes: Epanechnikov kernel using bandwidth h=1.25

Kernel density of α

kdensity alpha, title(Kernel density

of {&alpha}) xtitle({&alpha})
ytitle(Density) bw(1.25) note(Notes:

Epanechnikov kernel using bandwidth

h=1.25)

Hint 14. Using the combination of curly brackets “{}” and the &-symbol, you can use greek letters in

the text you add to graphics. In the last example, α is written in greek letters. Here are some examples:

Symbol Stata-Code

γ {&gamma}
φ {&phi}
Φ {&Phi}

6.2.3 spmap - Build vectorial maps with shapefiles (shp)

spmap is a user written package to generate very nice looking vectorial maps based on the data in

your Stata® database. You need a shapefile6 (shp) containing the GIS data of the country of interest

with the same identifier for entities (e.g. states) as you have in your data7. First at all, you have to

convert the shp-file to a Stata® database using the command shp2dta:

shp2dta using CHE adm, data(CHE-d) coor(CHE-c) genid(id) replace

This is an example to convert the file CHE adm.shp into two databases with names you can freely

choose. Here I chose CHE-d for the database containing the data (all type of information from the

shp file) and CHE-c for the database with the coordinates. Moreover, the option genid(id) generates

a new variable id with the identifier of the unit.

In a second step we have to merge the CHE-d (data database) with our database of the analysis, e.g.

your working database on any economic phenomenon. It is important to check if the identifier used

in the shp-file corresponds to the one you use in your file, otherwise you have to change the it in your

file, as it would become very hard to change in the shp-file. Once you have merged your data, it is

very simple to create a map, using for instance the following code
1: spmap myvalue using "CHE-c.dta", id(id) clmethod(custom) ///

2: clbreaks(0 0.2 0.4 0.6 0.8 1) fcolor(Blues) ///

3: ocolor(black ..) plotregion(icolor(none)) legenda(on) legstyle(0) ///

4: legend(order(1 "0 - 0.2 " 2 "0.2 - 0.4" 3 "0.4 - 0.6" 4 "0.6 - 0.8" 5 "0.8 - 1.0") position(11))

6Free shapefiles can be found under http://www.mapcruzin.com and on the websites of some government agencies

depending on the country
7If the numbers are different, then change the identifier in your data, this is easier than in the shp-files

36

http://www.mapcruzin.com

6 SUMMARY STATISTICS AND GRAPHICS 6.2 Graphs and plots

produces the graphic hereafter. The first line indicates on which variable we want to perform the

graphic (myvalue) and which database contains the coordinates. The id(id) indicates the identifier

of the unit (here Swiss cantons) and clmethod(custom) is used to customize the thresholds between

categories. These are indicated in clbreaks(....) and the option fcolor selects the color set to be

used. An overview of the color sets can be found in the help file. ocolor is used to define the color

of the border and plotregion(icolor(none)) defines the background (here empty). The following

commands are used to customize the legend: first its set to be displayed, then the style is selected and

finally the values are changed to whatever text you want.

0 − 0.2
0.2 − 0.4
0.4 − 0.6
0.6 − 0.8
0.8 − 1.0

Random values in Switzerland

This fully vectorial map was exported from Stata® with graph export as explained in sections 6.2.4

and 8.1.1.

6.2.4 Export graphs

When you produce a graphic in Stata it is generally displayed in a new window. You can easily save

graphics in various formats using the command graph export, followed by the name of the file (with

extension!). Use the option as(format) to indicate the format to export and replace to overwrite

an old graphic if you wish to do it. If you don’t use the as() option, the file extension will be used to

determine the format. The supported graphic formats under windows are:

.ps PostScript

.eps EPS (Encapsulated PostScript)

.wmf Windows Metafile

.emf Windows Enhanced Metafile

.png PNG (Portable Network Graphics)

.tif TIFF

I suggest the use of PNG for the standard use, since the graphics are relatively small and all standard

programs can read them.

37

6.2 Graphs and plots 6 SUMMARY STATISTICS AND GRAPHICS

Hint 15. If you work with LATEX and would like to use Stata® -graphics, you should export the

graphics as vector graphics in order to get the best possible quality. See section 8 on how to export

graphs to LATEX and how to use them in LATEX without loss of quality.

38

7 ECONOMETRIC ANALYSIS

7 Econometric analysis

The goal of this section is not to describe all possible estimation commands in detail, but rather to

give a short overview of commands, helping to find the needed routine. If you wish to learn more

about the command and its options, you should refer to the help file, which includes in many cases

examples. Type

help mycommand

to display the help file of the command mycommand.

7.1 Continuous outcome

7.1.1 regress - OLS estimation

The most basic regression is econometrics is the OLS estimation and the regress command might be

the most used. To perform an OLS estimation of y1 on x1, x2 and x3 you simply write

reg y x1 x2 x3

or using placeholders you can even reduce it to

reg y x*

if there are no other variables starting with the letter “x”.

All regression commands include a variety of possible options, starting from more technical settings

for Stata® and going to relatively complicated versions of the estimated model. A commonly used

option is used to change the way standard errors are computed. In a general way, the option is called

vce(vcetype), where vcetype can take many different values8. Common options include:

option Description

robust Computes heteroskedasticity-consistent standard errors according to

White (1980). This option is available in many estimation commands

and can be invoked directly by typing for instance reg y x1 x2,

robust instead of reg y x1 x2,vce(robust).

noconstant Performs the OLS estimation without constant term.

beta Provides standardized coefficients β∗ defined as

β∗ = β
σx
σy

where β is the estimated coefficient,σx and σy the standard deviation of

the independent and dependent variable respectively.

A typical output of a simple regression analysis looks like:

Source | SS df MS Number of obs = 1000

-------------+------------------------------ F(2, 997) = 996.87

Model | 2034.95712 2 1017.47856 Prob > F = 0.0000

Residual | 1017.61138 997 1.0206734 R-squared = 0.6666

-------------+------------------------------ Adj R-squared = 0.6660

Total | 3052.56851 999 3.05562413 Root MSE = 1.0103

8see help vce option for more details

39

7.1 Continuous outcome 7 ECONOMETRIC ANALYSIS

--

y | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+--

x1 | 1.058603 .0324676 32.60 0.000 .9948909 1.122316

x2 | .9816983 .0326528 30.06 0.000 .9176222 1.045774

_cons | .9089836 .031962 28.44 0.000 .8462631 .971704

--

where the upper left panel provides ANOVA-like information of the sum of squares, degrees of freedom

and mean sum of squares. The upper right panel provides some statistics of the model fit and the

main panel thereafter is the actual estimation. Each row refers to one regressor, starting with the

coefficient (coef.), followed by the standard errors (Std. Err.), the t-statistic (t), the p-value (P > |t|)
and the 95% confidence interval.

7.1.2 Other estimators of continuous outcome

The following table provides a short overview of other estimators used for continuous variables.

Command Description

cnsreg Constrained linear regression model. Define first a constraint using the command

constraint :

constraint 1 x1=x2

and then use the command for the constrained linear regression model:

cnsreg y x1 x2 x3,constraints(1)

gmm Generalized method of moments estimation. See the help file for details.

heckman This command allows you to perform the OLS estimation with selection following

Heckman (1976). The command is used similar to regress, but you include the

option select(model) where model refers to the selection model, having a dummy

variable as dependent variable, taking the value of 1 when the observation is selected

in the main equation and 0 otherwise.

ivreg Instrumental variable (IV) estimator. The syntax is relatively easy, assume that you

regress y on x1, x2 and x3, where x1 and x2 are assumed to be endogenous and

therefore will be instrumented by z1,z2 and z3. Then the command is simply

ivreg y (x1 x2=z1 z2 z3) x3

Using the options 2sls, liml and gmm you can choose the estimator to be the two-

stage least squares, the limited-information maximum likelihood or the generalized

method of moments estimator respectively.

reg3 Three-stage least squares (3SLS) estimator for simultaneous equations. See the help

file for details.

sureg Zellner’s seemingly unrelated regression. See the help file for details.

tobit Tobit estimation for censored dependent variable. The syntax is similar to the

regress where you add two options ul(#) and/or ll(#) to indicate the upper and

the lower limit respectively. For example if you have data on income that is censored

due to data collection at 999999 then the command would be

tobit income educ exper, ul(999999)

treatreg Treatment-effects model

truncreg Truncated regression model. Similar to the tobit model but for truncated variables.

For instance the income is truncated at zero, since we cannot have negative incomes:

truncreg income educ exper, ll(0)

- Continued on next page -

40

7 ECONOMETRIC ANALYSIS 7.2 Categorical outcome

selmlog This is a user written command to perform OLS estimation with Selection bias correc-

tion based on the multinomial logit model. The command features correction terms

according to Lee (1983), Dubin and McFadden (1984) and Dahl (2003).

7.2 Categorical outcome

7.2.1 probit - Probit estimation

probit estimates the standard probit model for dichotomous dependent variables. The syntax is

exactly the same as for regress. If you want to obtain rather the marginal effects than the raw

coefficients, the command dprobit is more suitable. See also section 7.9 for more details on marginal

effects using the newly introduced command margins.

7.2.2 dprobit - Probit estimation with marginal effects

dprobit is based on probit but reports the marginal effects. If you want to publish marginal effects

in your work and use estout to produce your estimation table, then you have to use dprobit instead

of probit, since otherwise estout cannot report the marginal effects.

7.2.3 logit - Logit regression

The logit command is used exactly the same way as the probit command. See the help file for

details.

7.2.4 mlogit - Multinominal logit

To perform a multinominal logit model, you can use the command mlogit where the syntax is very

easy as well:

mlogit y x1 x2 x3, base(2)

where y is a categorical variable with integer values. The option base(2) in the example is not

necessary but permits you to define the base outcome, here the value 2. See the help file for details.

7.2.5 oprobit - Ordered probit model

oprobit performs an ordered probit model (Greene, 2008, Ch. 23.10.1, page 831). The dependent

variable must be an ordered categorical variable, where higher values refer to better outcomes.

7.2.6 ologit - Ordered logit model

ologit performs an ordered logit model, see oprobit for more details.

7.3 Count data

7.3.1 poisson - Poisson regression

poisson performs a Poisson regression on count data. The dependent variable must contain positive

integer values only. See the help file for details.

41

7.4 Panel data 7 ECONOMETRIC ANALYSIS

7.3.2 nbreg - Negative binomial regression

nbreg performs a negative binomial regression on count data. The dependent variable must contain

positive integer values only. See the help file for details.

7.4 Panel data

7.4.1 xtset - Set-up the panel data

Before being able to perform panel data analysis, you have to tell Stata® about the panel structure
of the data. Normally the data should have the long form (see reshape for details on the form and
how to change it). Typically you have a variable identifying the individual (the unit more generally)
and a variable describing the time dimensions (e.g. the year). Assume now that these two variables
are id and year, then the command to define the panel data is given by

xtset id year

which provides you directly with some information on the data enabling you to verify if everything
went well:

panel variable: id (unbalanced)

time variable: year, 2000 to 2004, but with gaps

delta: 1 unit

To get a more detailed description of the data’s pattern, consider the command xtdescribe

7.4.2 xtdescribe - Describe the pattern of the panel data

xtdescribe allows you to get some more information on the structure of your panel data. You must

have used xtset before. The just type

xtdescribe

and you will get a detailed description like the following:
id: 0, 1, ..., 99 n = 100

year: 2000, 2001, ..., 2004 T = 5

Delta(year) = 1 unit

Span(year) = 5 periods

(id*year uniquely identifies each observation)

Distribution of T_i: min 5% 25% 50% 75% 95% max

2 3 4 4 5 5 5

Freq. Percent Cum. | Pattern

---------------------------+---------

49 49.00 49.00 | 11111

8 8.00 57.00 | 11.11

7 7.00 64.00 | 111.1

6 6.00 70.00 | .1111

6 6.00 76.00 | 1.111

6 6.00 82.00 | 1111.

4 4.00 86.00 | 1.11.

3 3.00 89.00 | ..111

2 2.00 91.00 | .1.1.

9 9.00 100.00 | (other patterns)

---------------------------+---------

100 100.00 | XXXXX

42

7 ECONOMETRIC ANALYSIS 7.5 Time series

First general information on the panel structure is indicated, for instance the variables identifying

both dimensions with their respective value pattern. You will also be informed if the combination of

dimension identifiers identifies each observation uniquely, a very important issue for further analysis.

Finally the most common patterns in the data are displayed, where the 1 indicates that the value

is present and the dot (.) refers to missing data. In our example we have 49 observations where

information is available for all 5 years in the sample, followed by the second most common pattern

where in all but the third year information is available.

7.4.3 xtreg - Panel regression: fixed and random effects

Once your data is set up, you can start running regression models. In this section I only present the

command xtreg which is able to perform fixed-, between- and random-effects and population-average

linear models.

The syntax is similar to the syntax used in regress by simply putting

xtreg depvar indepvars, model

where depvar and indepvar are the dependent and independent variables respectively and model refers

to the type of model that you want to estimate:

re Random effects model (default), GLS estimation

fe Fixed effects model

be Between effects model

mle Maximum likelihood random effects model

pa Population average model

See the help file for details.

Hint 16. See the section 3.10 on factor variables and timeseries operators to learn more about the

use of lagged, forwarded and differenciated variables in panel models

7.5 Time series

In general you can refer to what was written about panel data in section 7.4 and apply it directly to

time series data. Instead of the prefix xt you should now use ts. For instance to set up your data,

you use

tsset year

For the moment, no more time series specific information is available in this document. For further

details refer to section 7.4 or check out http://dss.princeton.edu/online_help/stats_packages/

stata/time_series_data.htm

7.6 Extracting estimation results

Almost every Stata® routine saves results in macros names r(name), e(name), s(name) or c(name).

You can easily access this data either directly of saving them to your own macros. Look at the following

example:

sum x1

43

http://dss.princeton.edu/online_help/stats_packages/stata/time_series_data.htm
http://dss.princeton.edu/online_help/stats_packages/stata/time_series_data.htm
http://dss.princeton.edu/online_help/stats_packages/stata/time_series_data.htm
http://dss.princeton.edu/online_help/stats_packages/stata/time_series_data.htm

7.7 Post estimation 7 ECONOMETRIC ANALYSIS

local mean=r(mean)

local sd=r(sd)

local t=‘mean’/‘sd’

display "The t-statistic is: ‘t’"

First, the summary statistics of the variable x1 are computed with the command summarize. This

command is a so-called r-class command, meaning that the data is stored in r(name). To see all

saved values in r() type return list9. The second and third line simply copies the values into used

defined local variables. The fourth line then computes a new value out of the stored data and the last

line displays the result.

Some results are stored in matrices (e.g. estimation coefficients and variance-covariance matrices. See

section 3.9.5).

7.7 Post estimation

Once a regression is performed, it is oftentimes needed to perform some post-estimation tests. In this

section I present a few of them, however, in general you find in the help files of the command a link

to the post-estimation commands of this specific command. This is useful, since not all estimations

allow for the same post-estimation commands.

7.7.1 hettest - Breusch-Pagan / Cook-Weisberg test for heteroskedasticity

After regress you can simply type hettest to perform a Breusch-Pagan test on heteroskedastic error

terms. In the output the H0 is explained, being a constant variance. Hence, finding a p-value lower

than the threshold would indicate heteroskedastic error terms and you might want to consider the

White (1980) correction using the option robust (see section 7.1 on page 39)

7.7.2 test - Test linear hypotheses after estimation

test allows you to make tests on the coefficients of a regression. For instance, to test whether the

coefficient of the variable x1 is equal to 2, type

test x1==2

or to test whether the coefficients of x1 and x2 are equal put

test x1==x2

This command will be performed on the active estimation, which is in general the last estimation

performed.

7.8 Saving and reusing estimations

7.8.1 est store - Save an estimation

Like for the database, you can always have at most one estimation active, but estimations can be

stored and used later on as well. To store an estimation simply write

est store myestimation1

9Type ereturn list for e-class commands, sreturn list for s-class commands and creturn list for c-class com-

mands

44

7 ECONOMETRIC ANALYSIS 7.8 Saving and reusing estimations

to save the current estimation under the name myestimation1. This is very useful to produce estimation

tables afterwards (see est table (section 7.8.4) and estout (section 8.2.1)).

7.8.2 est restore - Restore an estimation

You can restore (re-activate) an estimation previously saved at any moment by simply writing

est restore myestimation1

This will not display the regression again, but the data off the regression will be available again in the

e-class-scalars (type ereturn list to see them).s

7.8.3 est replay - Replay an estimation

If you want to display an earlier regression again, then you can use

est replay myestimation

Important: this command does not reactivate the estimation, it simply displays it. To reactive an

earlier regression, use the command est restore.

7.8.4 est table - Display an estimation table of several regressions
A very nice feature of the general command estimates is the sub-command estimates table, which
allows you to display several regressions at a time in order to compare them. I illustrate the use of
this command with a short example using the system-database auto.dta. First, we perform and save
to regressions:

sysuse auto, clear

reg price weight length

est store reg1

reg price weight length trunk

est store reg2

This example simply performs two OLS regressions with the command regress on two and three
independent variables respectively and saves the results in reg1 and reg2. Now we would like to
display the two regressions with

est table reg1 reg2

which yields to the following display:

--

Variable | reg1 reg2

-------------+--------------------------

weight | 4.6990649 4.7215989

length | -97.960312 -102.66518

trunk | 28.376437

_cons | 10386.541 10812.329

--

This is not yet the nicest estimation table ever seen! With a few additional options, you can make it
much better:

est table reg1 reg2, stats(N r2 a) b(%6.3f) star(0.1 0.05 0.01)

you already get a useful display like:

--

Variable | reg1 reg2

-------------+--------------------------

weight | 4.699*** 4.722***

length | -97.960** -102.665**

trunk | 28.376

_cons | 1.0e+04** 1.1e+04**

45

7.9 Marginal effects 7 ECONOMETRIC ANALYSIS

-------------+--------------------------

N | 74 74

r2_a | 0.329 0.320

--

legend: * p<.1; ** p<.05; *** p<.01

where you immediately see the significance levels of the coefficients and some statistics of the estima-

tion. Let us have a look at the different options:

star(n1 n2 n3) Allows you to define significance levels of the stars. In our example the

standard 10%, 5% and 1% were chosen.

b(format) Allows you to format the output of the coefficients and to limit the

amount of digits after the coma. See 2.6.4

stats(args) Enables you to display some estimation relevant statistics:
N Number of observations

aic Akaike’s information criterion

bic Schwarz’s Bayesian info. criterion

chi2 Value of χ2

ll log likelihood

se, t, p You can display in addition to the coefficients the standard errors (se),

the t-statistics (t) and the p-value (p). Simply indicate the desired

statistic together with its format, e.g. se(%6.3g).

keep(coeflist) Only the coefficients indicated in coeflist will be shown

drop(coeflist) All coefficients in coeflist will be dropped from the table

7.9 Marginal effects

In many model the estimated coefficients of a model cannot be interpreted directly and one needs to

compute the marginal effects first. In the case of a probit, the usual way to do this was to use dprobit

instead of probit. However, Stata® introduced recently a completely new command margins that is

intended to compute marginal effects for a very wide range of models. Since I believe that this will be

the command to be used in the future, I will discuss it with some more details hereafter.

7.9.1 margins - Compute marginal effects (post estimation)

margins is a relatively new command to compute marginal effects for a large range of models. It is

a somewhat complicated command with a rather difficult syntax at first sight. On the other hand, it

offers many very nice options to estimate not only marginal effects at the mean, but basically wherever

you want. In this explanation I will focus on the very basic capabilities of margins and I encourage the

reader to have a look at the official help file of the command for more advanced uses of the command.

I will explain the command using a simple probit model, since most of the reader are familiar with it

and we will be able to compare it easily to the older dprobit command. For the following discussion

I use the freely available dataset margex which you can load by typing

webuse margex

Let us consider the simple probit model where outcome is explained by two continuous variables age

and distance and the gender dummy called sex. The simple estimation of

46

7 ECONOMETRIC ANALYSIS 7.9 Marginal effects

probit y sex age distance

will provide us with the estimated coefficients that are not directly interpretable. An easy way to get

the marginal effects instead would be to use

dprobit y sex age distance

Unfortunately, this solution does not store the marginal effects in the system matrices. Moreover, the

newly introduced command margins is more powerful, so let us discuss how it works.

Since it is introduced as a post-estimation command, it has to be always in combination with a prior

estimation command. To get the same marginal effects as in the example with dprobit one would

have to type:

probit outcome i.sex age distance

margins , dydx(*) atmeans

where it is important to use the factor variable (i.sex instead of sex) in the probit. Otherwise, the

command margins does not recognize sex as being a dichotomous variable and uses the procedure

for continuous variables. The option dydx(*) is used to indicate Stata® that we want to estimate

the marginal effect for all regressors. By replacing the * by some regressors, margins computes the

marginal effects only for the indicated variables. The option atmeans permits to compute the marginal

effect at the mean instead of the average marginal effect (see next paragraph).

ME at the mean vs. mean ME

Marginal effects are not uniquely defined in non-linear models. One option is to compute the

marginal effect for an average person (this is what the example above does) or the marginal effect for

each observation at their observed values and then average the different effects. Formally and with

some slight abuse of notation, the average marginal effect (AME) and the marginal effect at the mean

(MEAM) can be defined as follows for the probit model:

AME = E

[
∂Φ(Xβ̂)

∂xj

]
(1)

MEAM =
∂Φ(E[X]β̂)

∂xj
(2)

where Φ(.) is the cumulative normal distribution, X is the whole matrix of covariates and xj indicates

the variable for which we are computing the marginal effect.

It is also possible to compute the marginal effect at different points of the distribution. Let us consider

some examples, always assuming that the model we estimated before the margins command was

probit outcome i.sex age

In this case

margins, dydx(*)

computes the marginal effects for each observation at its observed levels of the regressors. In a second

step the average of all these marginal effects is computed giving you the average marginal effect. In

contrast,

margins, dydx(*) atmeans

defines a person that has the average characteristics and computes for this person the marginal effect

giving you the marginal effect at the mean.

47

7.9 Marginal effects 7 ECONOMETRIC ANALYSIS

Marginal effects at different points of the distribution

Sometimes it is interesting to look at the marginal effects at different points of the distribution. For

instance, if we would like to compute the marginal effect for people at the age of 50, we would use

margins , dydx(*) at(age=50)

To limit it further to men at the age of 50, we would use

margins , dydx(*) at(age=50 sex=1)

It is also possible to compute the marginal effects for several values. For instance, to compute them

simultaneously for the age of 20, 40 and 60, we would use

margins , dydx(*) at(age=(20 40 60))

Finally, we can automate these intervals using the following notation

margins, dydx(*) at(age=(20(5)60)

where the marginal effects are computed for all multiple of 5 starting from 20 and going up to 60.

Marginal effects for different groups/populations

It could also be interesting to compute the marginal effects for different populations. These groups

can be defined by the covariates of the model or variables that were not used in the model. To activate

this computation by groups you can use the over(varlist), where the whole computation is done for

each value of the variables in varlist10. It is important not to confound this option with the previously

explained at() option. While the at() option refers to the position in the distribution of a covariate

for which the marginal effect should be computed, the option over(varlist) computes the marginal

effect at a given position (can be specified as well) in the distribution for different groups. For instance,

margins , dxdy(*) over(sex) atmeans

computes the marginal effect at the mean for men and women separately.

Computational issues

Sometimes the computation of marginal effects can be very time consuming. If the computation

takes too much time, one might consider not to compute the standard errors (if they are not absolutely

needed), which should make the computation much faster. This can be done by adding nose as an

option.

Export marginal effects

Most of the time, we do not want to limit the computation to the display on the screen but would

like to export them. margins might surprise you negatively when you first try to do this. For instance,

if you use the following code

probit outcome i.sex age distance

margins , dydx(*) atmeans

est store reg1

estout reg1, margin

you will get the estimated coefficients of the probit and not the marginal effects. This is because

margins does not overwrite the e-values of the probit estimation. If you want margins to do so, you

10Alternatively, you can also use the option by(varlist), giving you exactly the result

48

7 ECONOMETRIC ANALYSIS 7.9 Marginal effects

just have to add the option post. Hence, the correct syntax for the above example would be

probit outcome i.sex age distance

margins , dydx(*) atmeans post

est store reg1

estout reg1, margin

Actually, the option margin is no longer needed in the command estout, however, I leave it here,

because you might have other regressions in the estout that still need the option.

Predicted values at different levels of covariates

An additional nice feature of margins is the ability to compute predicted values (or expected

values) conditioned on some specific values of covariates. Imagine for instance that we would like to

have the marginal effect of an interaction of two dummy variables. For non-linear models the standard

procedure cannot be used. However, we can simply compute the predicted outcome conditional on

all possible combinations of the two dummy variables. Then we can compute the marginal effect and

using the test command we can test its significance. Here a very simple example:

sysuse nlsw88, clear

probit union i.south##i.married age

margins, predict() at(south=(0 1) married=(0 1)) atmeans post

test 4._at-3._at-2._at-1._at == 0

The first line loads the database, on the second line I estimate a probit model with an interaction

term between two dummy variables (see 3.10 for details on factor variables). The third line computes

the four possible conditional probabilities, where the option atmeans set all other control variables to

their respective mean and the option post saves the coefficient for posterior use. Finally, the fourth

line performs a test whether the marginal effect of the interaction term is significant or not11.

Final remarks on margins

I presented here only the most basic features of margins, however, there are many more. The

command is very complete and usable for a wide range of estimations. Even though the syntax is

somewhat heavy at first sight, I encourage the reader to invest some time in this command, because

you can really get very nice results out of it.

11See Ai and Norton (2003) to see why the test on the coefficient is not useful in non-linear models

49

8 STATA MEETS LATEX

8 Stata meets LaTeX

Besides the high quality features in econometric analysis and data handling, Stata® is also a very

powerful tool thanks to its ability to communicate with other software package. More precisely, it

is relatively easy to export econometric results and graphics to formats that can be read by other

packages, especially LATEX . In this section I present some of the possible ways to export your results

to LATEX and also how to import them into your LATEX project. The ultimate goal of this section

is to enable you to automate the process completely. Changing your model slightly in Stata® will

automatically change the tables and graphs in your LATEX document, thus running the Stata® code

and compiling the LATEX document will suffice!12

8.1 Exporting high quality graphics to LaTeX

8.1.1 graph export - Graph export to eps

Once you have your graph in Stata® you can export it into the .eps-format. This format is generally

not very easily readable under Windows, but the import into LATEX is easy. The normal command

includegraphics can be used in combination with the package epstopdf. The package converts the

eps graphic into a pdf graphic which LATEX can use. Hence the complete LATEX code to use is:

In the preamble: \usepackage{epstopdf}

and in the body: \includegraphics{mygraphic.eps}

The following two graphs were built with the same code, once exported as PNG (left) and once as

EPS (right). I suggest you to zoom in the two graphs to a maximum and then I let you choose your

preferred graph:

44.4%

44.9%

10.7%

male female
unknown

Gender distribution in sample data

8.2 Exporting estimation results to LaTeX

8.2.1 estout - Creating estimation tables

Different genuine Stata® - and user written-commands are available to export your estimation results

to LATEX . Here I focus on the command estout written by Ben Jann. In my opinion it is the most

flexible command and offers great possibilities. The basic syntax is similar to est table, but it offers

much more features. I illustrate its use with a small example based on the two regressions used in the

demonstration of est table in section 7.8.4:

12The part of interpreting the results and writing the paper cannot be automated yet ;-)

50

http://www.ctan.org/pkg/epstopdf

8 STATA MEETS LATEX 8.2 Exporting estimation results to LaTeX

1: estout reg1 reg2 using regtable.tex, replace style(tex) margin cells(b(fmt(%9.3f) star) se(par)) ///

2: starlevels(* .1 ** 0.05 *** .01) ///

3: stats(N r2_a , labels(N "Adj. $ R^2$ ") fmt(%9.0f %6.3g)) mlabels("Model 1" "Model 2") ///

4: collabels(none) varlabels(_cons "Constant"weight "Weight" length "Length" trunk "Trunk space") ///

5: order(length weight trunk _cons) ///

6: prehead(\begin{center}\begin{tabular}{l*{@M}{l}} "\hline") ///

7: posthead("\hline") ///

8: prefoot("\hline") ///

9: postfoot("\hline\end{tabular}\end{center}")

produces the following table:

Model 1 Model 2

Length -97.960** -102.665**

(39.175) (42.587)

Weight 4.699*** 4.722***

(1.122) (1.132)

Trunk space 28.376

(97.058)

Constant 10386.541** 10812.329**

(4308.159) (4574.211)

N 74 74

Adj. R2 .329 .32

The command might look a bit scary at first, but you will get used to it very quickly. Moreover,

once you defined your style correctly, you can copy-paste large parts of the code from one table to

the next. Let’s go through the code with detail. The first line corresponds mainly to what we saw

for the command est table. First we include with reg1 reg2 the names of the regressions we want

to display, followed by the file to create. After the comma we use the option replace in order to be

able to re-run the script (otherwise there is an error) and the style(tex) to declare that we want

a LATEX output. The option margin does not make much sense in this example, since in the OLS

estimation all estimated effects are marginal effects. However, if you estimate for instance a dprobit

model, this option is needed to display marginal effects rather than the coefficient estimates. The

option cells is used to choose all the coefficient-related information to be displayed. In this example

the betas (b) is formatted with the 9.3f format with stars included and for the standard errors (se)

I use the option par to get the standard errors in parentheses.

The second line simply defines the significance levels of the stars and in contrast to the option saw in

est table, you can also choose other symbols than the stars.

The third line first declares the statistics of the estimation to be displayed, followed by the label of

the statistic and the format. The option mlabels allows you to give each regression a name; if you do

not specify this option, reg1 and reg2 will be displayed.

Line 4 formats the first column where the variables are indicated. Without any of these option the

variable name, as it appears in Stata® , will be displayed. The first option, which is not active here,

would allow you to use the labels of the variable rather than the names and the option varlabels

allows you to change each variable name separately for the table output without changing anything

in your data. In this example I just changed all the names to capital letters and the constant term to

a nicer looking word.

The option order on line 5 allows you to change the order of the variables in the table and the remaining

4 lines are all related to the LATEX code. They allow you to put some free text (or LATEX commands)

51

8.2 Exporting estimation results to LaTeX 8 STATA MEETS LATEX

at very specific places in the table. The prehead is before the name of the regressions. I use it here

to include directly the tabular environment of LATEX using the variable @M, which is the number of

models, directly computed by the command. Hence, you do not have to adapt the number of columns

if you add a regression, this will be done automatically. If you want to include your table in a table-

environment of LATEX , you could start it here as well. All the information will simply be transferred

to the generated LATEXcode. The posthead is between the regression names and the first coefficients

and the prefoot will be placed between the coefficients and the statistics, while the postfoot is after

the statistics.

This is only one of many possible examples of the command estout and I encourage you to consult

the manual of the command.

To include the command to your latex file, simply use

\input{regtable}

The big advantage is that you can make small changes directly in your do-file and the table will be

adapted in your LATEX -paper. This command should definitely help you to avoid copying estimation

results by hand to you LATEX file, a process with some risk of making errors.

8.2.2 tabout - Creating descriptive statistics tables

Similar to the command estout you can export frequency tables with the command tabout, written

by Ian Watson. This command has extremely many options, which makes it a little bit difficult at the

beginning. A very simple example of the code is:

tabout female indigenous using crosstable.tex , replace ///

style(tex) cl1(2-4) c(cell) layout(rb) f(1p) h3(nil) font(bold)

which makes a cross frequency table of the variables gender and indigenousas follows:

indigenous

female No Yes Total

No 44.4% 5.8% 50.2%

Yes 45.7% 4.1% 49.8%

Total 90.1% 9.9% 100.0%

The using crosstable.tex defines the file to be written, the replace options allows you to overwrite

an earlier version of the file. style(tex) indicates that you want to have a LATEX file, the cl1(2-4)

add a horizontal line between column 2 and 4 right after the variable indigenous. c(cell) indicates

that you want to have the percentage by cell, alternatives are freq for frequencies and col and row

for percentages according to the column and row respectively. The f(1p) option indicates the format

of the table, here the p stands for percentage. Simply f(1) would create a number with one decimal.

The h3(nil) option avoids that at the top of each column a %-sign is shown (N in case of frequencies)

and finally font(bold) makes some parts of the table bold. You could also include some pretable and

posttable LATEX -code, but this must be done with external files. Therefore I prefer not to do it in my

latex-code, thus the import becomes then:

52

8 STATA MEETS LATEX 8.2 Exporting estimation results to LaTeX

\begin{tabular}{llll}

\input{crosstable}\endrule

\end{tabular}

53

9 IMPORTING DATA IN OTHER FORMATS

9 Importing data in other formats

9.1 usespss - Read SPSS data

Oftentimes micro data is made public in the SPSS (or PASW) format (file extension .sav), however, it

is very easy to import such data into Stata® . Using the command usespss you can open SPSS-data

just like the normal Stata® format. Labeled data will be imported with labels. The command works

like use:

usespss $source/myspssdata.sav

will import the data and then you can use it directly or save (convert) it into the .dta-format by using

the command save.

9.2 fdause - Read SAS XPORT data

Exactly like the usespss-command, you can import data from SAS using the command fdause.

54

10 STATA IS NOT ENOUGH? ADD USER-WRITTEN MODULES TO ENHANCE STATA

10 Stata is not enough? Add user-written modules to enhance Stata

Stata® comes with a quite complete set of commands and modules to perform most of modern econo-

metrics analyses. However, some very specific analyses might still be missing. If you are not eager

to program the modules yourself, you can search for a user-written command in the internet. For

econometric analyses the best platform is SSC (Statistical Software Components) on IDEAS13. To

find the correct module, use the findit command. For instance, if you would like to run a treatment

effect analysis, type

findit treatment effect

Several propositions are made. An alternative way to find user written modules is to search on the

internet and most of the time you will end up at the SSC on IDEAS.

If you already know the name of the command and it is available on SSC, you can install it very easily

ssc install NAMEOFMODULE

Other SSC related commands that might be useful are:

Command Description

ssc new Displays the newest user-written command

available on SSC.

ssc hot Displays the most downloaded modules.

ssc uninstall mypackage Uninstalls the package named mypackage

ssc install mypackage, replace Updates the package mypackage

ssc describe mypackage Displays the description of the package

Hint 17. To check which version of a command you have installed on your machine, you can simply

type

which packagename

and Stata® will show you the version of the module packagename

Very useful user-written commands include: ivreg2, estout, tabout. Many of the user-written com-

mands do not necessarily help you estimating very complicated model, but they might be very useful

for some basic tasks like converting data to other formats, exporting nice-looking tables, performing

some basic statistical tests, etc...

13http://ideas.repec.org/s/boc/bocode.html

55

http://ideas.repec.org/s/boc/bocode.html
http://ideas.repec.org/s/boc/bocode.html

11 PROGRAMMING YOUR OWN COMMAND

11 Programming your own command

When you start using Stata® a lot and perform many times the same type on analysis it might be

interesting to program your own routine. This is fairly easy and not much more knowledge is needed

than for a standard do-file. In this section I will just write how to start programming, but I will not

enter a long discussion about specific commands for programmers.

1: capture program drop iop

2: program define iop , rclass

3: version 8.2

4: syntax varlist [if] [in] [, BOOTstrap(integer 0) DECOMPosition

GRoups(varlist max=1) PRopt(str) BOOTOPT(str) PROBIT*]

5: marksample touse

6: quietly{

7: tokenize ‘varlist’

8: local depvar ‘1’

9: macro shift

10: local xvars ‘*’

11: // BOOTSTRAP

12: if(‘bootstrap’ & ‘bootstrap’>0){

13: forvalues i=1/‘bootstrap’{

[SOME LINES OF THE CODE ARE NOT REPORTED HERE]

14: end

The first line drops the program (if already existent) from the memory. This is needed to enable

us to define it again. The word capture is included to avoid an execution stop in case of an error,

typically when the program does not exist yet. The second line then defines the program with the

name iop, which must be equal to the name of the ado-file (see later on). The option after the coma

refers to the class of the routine, r-class is generally a good option. Line 3 declares Stata® that the

ado-file should work from version 8.2 on, hence trying to run it on an earlier version causes a problem.

The fourth line is the most important for the moment, since we declare the syntax - this is basically

the same as in the help files. After the word syntax you write varlist if you will enable the user

to provide a varlist. You can include the possibility to offer the user the if and in statements. If

you do so, you have to consider this after in the code, since Stata® does not limit the routine to the

limitations given by the user automatically! After the coma you might include all the options. In this

case all options are non-mandatory, since the opening bracket is before the comma. The capital letters

indicate the minimum amount of letters the user has to write, for instance the option bootstrap will

be understood by Stata® whether the user writes boot or bootst or bootstrap, but not if he writes

boo. Two types of options are available: with and without arguments. Those without arguments

generate simply a local containing the complete name of the option when the option is chosen. The

option with arguments save the arguments in a local variable with the name of the option. You have to

56

11 PROGRAMMING YOUR OWN COMMAND 11.1 Where and how to save your routine?

indicate always the nature of a argument, being for instance str for a string or varlist for a varlist .

Line 5 then converts the if and in conditions into a temporary variable I call here touse. In any

routine you use afterwards you will have to indicate

commandname varlist if ‘touse’

in order to limit your routine to the sample. An alternative is to keep only the sample you need:

marksample touse

preserve //saves the current state of the DB for later

keep if ‘touse’

[ALL YOUR PROGRAM]

restore //restores the database as it was before the preserve command

The remaining lines of the code are then more or less standard. You can use all the routines available

in Stata® . The do-file end with the command end (line 14).

11.1 Where and how to save your routine?

The routine can be written like a normal do-file but must be saved under the extension .ado under the

form myroutinename.ado. It is important that the file has the same name as your command, otherwise

Stata® cannot execute it. Under Windows it is most recommended to have a folder C://ADO where

Stata® saves all updates anyway and there to save your ado-files in C://ADO/personal in order to

have them at a save place. Once you saved and executed your ado-file once, it is available for the use

in Stata® as long as you don’t delete the file!

11.2 Useful commands for programming

Some commands are especially useful when programming ado-files, allowing you to achieve the highest

possible flexibility. Here are some examples:

11.2.1 tokenize - Tokenize a string

Many commands include a varlist where the first variable is the dependent variable and the remain-

ing independent. Technically the varlist is just a string stored in a local variable, thus Stata® does

not know a priori what to do with it. An easy way is to tokenize the string. Assume to have a

varlist in you syntax and that the string will be available for you in the form of a local variable

called varlist. By using

tokenize ‘varlist’

you can split up your string into its elements. To illustrate this point consider the following example:

local varlist="income educ exper gender"

tokenize ‘varlist’

which splits up the text income educ exper gender into 4 elements stored in local variables called 1,

2, 3 and 4. For instance, you can now change the order:

display="‘3’ ‘2’ ‘4’"

57

11.2 Useful commands for programming 11 PROGRAMMING YOUR OWN COMMAND

would produce exper educ gender. Additionally the local named simply “*” contains the whole initial

string:

di "‘*’"

produces income educ exper gender. The interesting feature of * is the use with macro shift.

11.2.2 macro shift - Shifting the content of a local

The command macro shift makes a very simple but effective operation on the local * (see tokenize)

by eliminating the first element. Assume that the local * contains the string from section 11.2.1:

income educ exper gender, then

macro shift

convert the string into educ exper gender.

Consider now the combination of macro shift with tokenize. Assume that the varlist contains as

fist element the dependent variable and the remaining elements represent the explanatory variables,

then the following code help you to divide them:

tokenize `varlist' // Splits up the local varlist

local depvar=`1' // Stores the first element in the local depvar

macro shift // Drop the first element of the local *

local indep=`*' // Stores the remaining elements as local indep

11.2.3 marksample - Selecting the sample considering if and in

As already mentioned in the beginning of this section, the command marksample allows you to retake

the information of the if and in option of your syntax.

marksample touse

simply generates a temporary variable touse taking the value of 1 if the observation should be included

and zero otherwise.

You can then use in every command of your ado-file the condition

my command if `touse'

or simply limit the sample from the beginning. If choosing the second option, do not forget to preserve

the data at the beginning and restore it in the end, otherwise the user will have bad surprises after

using your command!

11.2.4 preserve - Making an image of your current data

The command preserve is not particularly a command for ado-files, but I present it here, since in the

programming of ado-files its most often used. preserve simply makes an image of the current state

of your data, allowing you to manipulate it thereafter and being able to recover it again, as it was,

with the command restore

11.2.5 restore - Restoring an image of your data

restore can only be used when preserve was used before and allows you to recover the image of the

data created earlier.

11.2.6 local:extended - Extract labels from variables and value labels

When programming a module it is sometimes useful to get the main labels and the value labels of

the variables. For instance, instead of displaying the variable names in the output, it might be nicer

to display the variable label. Using the extended functions for local variables (it works also with

58

11 PROGRAMMING YOUR OWN COMMAND 11.2 Useful commands for programming

global variables), you can easily extract this information from the data and use it afterwards. For a

discussion on the labels and how to create them, see section 5.1.5.

Extracting the variable label

Let us start by extracting the variable label from a variable female. Simply type

local mylocal:variable label female

to save the variable label of the variable female as local called mylocal14. To use the extracted text,

you can simply include the local, for instance by typing:

display "The variable label is:`mylocal'"

Extracting the value label

Besides the label for the variable, the value labels might be of interest for the programmer. To

extract the value labels we have to proceed in two steps. First we have to extract the name of the

value label for a given variable and we can then extract the label for every possible value. Let us

consider again the variable female and assume that it has a value label called gender where 0 is

labeled Male and 1 Female. To get this information we simply extract the name of the value label by

writing

local foo:value label female

We have now stored the name of the value label in the local foo and can proceed to the extraction of

the individual labels, for instance for the value of 1:

local label2:label `foo' 1

We have now stored the value label for 1 in the local label2 and could use if for instance by typing

display "The value label for female=1 is:`label2'"

Of course, if we already know the name of the value label, we could directly request the value by

typing:

local label2: label gender 1

However, this is rarely the case when we program a routine which should be applicable for different

datasets.

14Of course, you can use whatever name for your local.

59

12 SIMULATION

12 Simulation

The discussion of simulation in this document is limited to the discussion of generating random

variables.

12.1 Uniform distribution

The easiest way to create a random variable is definitely the uniform variable, which can be combined

with the generate command:

gen x=uniform()

which gives a variable x ∼ U[0,1] To generate rather U[10,20] you only need some basic algebra:

gen x=10 + uniform()*(20-10)

12.2 Normal distribution

To generate normal variable a special command is available besides the one related to a normal

generate. I suggest the use of drawnorm:

drawnorm x1 x2

will create two i.i.d variables with standard normal distribution.

drawnorm x1 x2, means(1 2) sds(4 3)

will generate two unrelated random variables:

x1 ∼ N (1, 4)

x2 ∼ N (2, 3)

One can go further by simulating random variables form a higher dimension normal distribution.

To do this, you will need to indicate either the covariance or the correlation matrix. The following

example uses the correlation matrix:

matrix define R=(1,0.9\0.9,1)

drawnorm x1 x2, means(0 0) sds(2 3) corr(R)

The first line defines the correlation matrix (see section 3.9.1) and the second line perform the random

draw. Note that by default as many observations as the dataset has will be drawn. This can be

changed with the option n(#)

12.3 Other distributions

Like the uniform distribution in section 12.1, random variables can be drawn from many different

distributions. Here is a short overview:

60

12 SIMULATION 12.4 Setting the random seed

runiform() = uniform()

rbeta(a,b) Beta distribution

rbinomial(n,p) Binomial distribution

rchi2(df) χ2 distribution

rgamma(a,b) Gamma distribution (Γ)

rhypergeometric(N,K,n) Hypergeometric distribution

rnbinomial(n, p) Negative binomial distribution

rnormal() Standard normal distribution (drawnorm preferable)

rnormal(m,s) Normal distribution (drawnorm preferable)

rpoisson(m) Poisson distribution

rt(df) Student distribution

To generate such a variable, you can simply use the generate command:

gen myvar=rpoisson(4)

generates a variable called myvar drawn from a Poisson distribution with parameter λ = 4.

12.4 Setting the random seed

By default no fixed random seed is set, thus every time you run you simulation another result will

appear. To control the random seed, you can set it with the following statement:

set seed n

where n can take any integer value, which allows you also to repeat the same simulation with different

seeds, using for example loops (section 3.11).

61

REFERENCES REFERENCES

References

Ai, Chunrong and Edward C. Norton, “Interaction terms in logit and probit models,” Economics

Letters, 2003, 80 (1), pp. 123–129.

Dahl, G. B., “Mobility and the Returns to Education: Testing a Roy Model with Multiple Markets,”

Econometrica, 2003, 70, 2367–2420.

Dubin, J.A. and D.L. McFadden, “An Econometric Analysis of Residential Electric Appliance

Holdings and Consumption,” Econometrica, 1984, 52, 345–362.

Greene, William H., Econometric Analysis, 6 ed., Pertinence Hall, Upper Sadle River, New Jersey,

2008.

Heckman, J., “The common structure of statistical models of truncation, sample selection, and

limited dependent variables and a simple estimator for such models.,” Annals of Economic and

Social Measurement, 1976, 5, 475–492.

Lee, L.F., “Generalized Econometric Models with Selectivity,” Econometrica, 1983, 51, 507–512.

White, Halbert, “A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test

for Heteroskedasticity,” Econometrica, 1980, 48 (4), 817–838.

62

Index

.do, 7

.dta, 7

#, 20

about, 23

aorder, 29

append, 30

betas, 43

Breusch-Pagan test, 44

c., 19

change working directory, 13

classes of commands, 15

clear all, 13

clear memory, 13

cnsreg, 40

codebook, 28

coefficients

extract, 18

test, 44

command

classes, 15

types, 15

comments, 12

compress, 10

compressing database, 10

condition, 15

programming, 20

conversion

data to matrix, 18

matrix to data, 18

Cook-Weisberg test, 44

correlate, 33

d., 19

data

description, 28

format, 9

load, 14

save, 14

data to matrix, 18

database

compressing, 10

describe, 28

descriptive statistics, 32

dichotomous, 19

display

matrix, 18

display format, 10

distribution

normal, 60

uniform, 60

do-file, 7

comments, 12

execute, 12

linebreak, 12

Download user written, 55

dprobit, 41

drawnorm, 60

drop, 28

dummy, 19

define, 25

e-class, 15

egenerate, 25

est replay, 45

est restore, 45

est store, 44

est table, 45

estimation

extract results, 43

estout, 50

exit, 23

extract

betas, 43

estimation results, 43

f., 19

factor variables, 19

fdause, 54

File

File types, 7

findit, 24

float, 9

foreach, 21

format, 9

63

INDEX INDEX

format, 11

forvalues, 22

generate, 25

global, 8

gmm, 40

graph export, 50

graphics, 34

greek letters, 36

gsort, 28

heckman, 40

help, 24

heteroskedacity, 39

hettest, 44

i., 19

if-condition, 15

if/else, 20

import

SAS, 54

SPSS, 54

in-condition, 15

ivreg, 40

l., 19

label

value, 26

variable, 26

label, 26

lagged value, 19

linebreak, 12

local, 8, 9

local:extended, 58

logical, 16

logit, 41

loops, 20

macro shift, 58

Marginal effects, 46

non-linear models, 49

margins, 46

marksample, 58

matrix, 8, 17

display, 18

functions, 18

rename columns&rows, 18

System matrix, 18

matrix define, 17

matrix get, 18

matrix list, 18

matrix rownames/colnames, 18

matrix to data, 18

memory

change, 13

clear, 13

merge

horizontal, 29

prepare the data, 29

vertical, 30

merge, 29

Missing values, 11

mkmat, 18

mlogit, 41

nbreg, 42

normal distribution, 60

numerical variables, 9

ologit, 41

Operators

logical, 16

relational, 16

oprobit, 41

order, 29

plot, 33

poisson, 41

Postestimation, 44

Marginal effects, 46

Predicted values, 49

preserve, 58

probit, 41

query, 23

r-class, 15

random

seed, 61

variables, 60

recode, 26

reduce size, 10

reg3, 40

regress, 39

64

INDEX INDEX

relational, 16

rename, 27

replace, 25

reshape, 31

restore, 58

robust, 39

robust standard errors, 39

SAS XPORT, 54

save, 14

scalar, 8

scaler, 9

search, 24

seed, 61

selmlog, 41

set, 23

set memory, 13

simulation, 60

sort, 28

spmap, 36

SPSS, 54

squared variable, 19

SSC, 55

string, 9

string types, 10

summarize, 32

summary statistics, 32

sureg, 40

svmat, 18

symbols

greek, 36

tabout, 52

tabstat, 32

tabulate, 32

test, 44

tobit, 40

tokenize, 57

treatreg, 40

truncreg, 40

tsset, 43

uniform distribution, 60

update, 23

use, 14

User written command, 55

usespss, 54

value

label, 26

variable

label, 26

squared, 19

variables

factor, 19

random, 60

VCE options, 39

VCE types, 39

Version of module, 55

while, 21

working directory

change, 13

xtdescribe, 42

xtreg, 43

xtset, 42

zip file, 10

65

	Introduction
	Why to use Stata?
	Alternative tutorials

	Interface, components and data structure
	Interface
	Command based
	Help files
	File types
	Data types: database and variables
	Data type and format
	Data type
	compress - Optimize the memory use of your database
	Further compressing by using a ZIP-file
	Display format
	format - Change the display format of a variable

	Missing values

	Basic commands
	do-files
	Line breaks
	Comments

	Prepare Stata for your analysis
	Loading and saving data
	The generic Stata command
	Types of commands
	Conditions
	Relational and logical operators
	Placeholders and selection of multiple variables
	Matrices
	matrix define - Generic command for matrices
	Some basic matrix functions
	matrix list - Displaying matrices
	matrix rownames/colnames - Renaming matrix columns and rows
	matrix get - Getting system matrices
	mkmat - Data to Matrix conversion
	svmat - Matrix to Data conversion

	Factor variables and time series operators
	i. - Categorical variables in the regression
	l. - Lagged variables
	f. - Forwarded variables
	d. - Difference
	c. - Continuous variables
	# - Interaction terms

	Loops and programming conditions
	if/else - if/else/elseif clause
	while - while loop
	foreach - Looping through elements
	forvalues - Looping through numerical values

	System commands
	System commands
	exit - Leaving the do-file or Stata
	query - Displaying Stata options
	set - Change settings
	about - Getting information of the version and license
	update - Update your Stata
	findit - Find ado-files online
	search - Search ado-files online
	help - Display help

	Data handling
	Variable manipulation
	generate - Generate a new variable
	replace - Replacing a variable
	egenerate - Generate a new variable with summary statistics
	recode - Recoding a variable
	label - Label your variables
	rename - Rename a variable
	drop - Deleting variables

	Describing and sorting the data
	describe - Describe the dataset
	codebook - Display the codebook
	sort - Sorting the data
	gsort - Sorting the data
	order - Sorting the variables
	aorder - Sorting the variables alphabetically

	Joining several databases
	merge - Merging/appending two databases (horizontally)
	append - Appending/merging two databases (vertically)

	Changing structure of a database (panel data)
	reshape - Reshape your panel data

	Summary statistics and graphics
	Descriptive statistics
	summarize - Summary statistics
	tabstat - More flexible summary statistics
	tabulate - One- and twoway tables of frequencies
	correlate - Correlation and Covariance

	Graphs and plots
	plot - Easy scatter plot
	graphics - General graphics
	spmap - Build vectorial maps with shapefiles (shp)
	Export graphs

	Econometric analysis
	Continuous outcome
	regress - OLS estimation
	Other estimators of continuous outcome

	Categorical outcome
	probit - Probit estimation
	dprobit - Probit estimation with marginal effects
	logit - Logit regression
	mlogit - Multinominal logit
	oprobit - Ordered probit model
	ologit - Ordered logit model

	Count data
	poisson - Poisson regression
	nbreg - Negative binomial regression

	Panel data
	xtset - Set-up the panel data
	xtdescribe - Describe the pattern of the panel data
	xtreg - Panel regression: fixed and random effects

	Time series
	Extracting estimation results
	Post estimation
	hettest - Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
	test - Test linear hypotheses after estimation

	Saving and reusing estimations
	est store - Save an estimation
	est restore - Restore an estimation
	est replay - Replay an estimation
	est table - Display an estimation table of several regressions

	Marginal effects
	margins - Compute marginal effects (post estimation)

	Stata meets LaTeX
	Exporting high quality graphics to LaTeX
	graph export - Graph export to eps

	Exporting estimation results to LaTeX
	estout - Creating estimation tables
	tabout - Creating descriptive statistics tables

	Importing data in other formats
	usespss - Read SPSS data
	fdause - Read SAS XPORT data

	Stata is not enough? Add user-written modules to enhance Stata
	Programming your own command
	Where and how to save your routine?
	Useful commands for programming
	tokenize - Tokenize a string
	macro shift - Shifting the content of a local
	marksample - Selecting the sample considering if and in
	preserve - Making an image of your current data
	restore - Restoring an image of your data
	local:extended - Extract labels from variables and value labels

	Simulation
	Uniform distribution
	Normal distribution
	Other distributions
	Setting the random seed

